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Abstract. Deconvolution is an indispensable tool in image processing
and computer vision. It commonly employs fast Fourier transform (FFT)
to simplify computation. This operator, however, needs to transform
from and to the frequency domain and loses spatial information when
processing irregular regions. We propose an efficient spatial deconvolu-
tion method that can incorporate sparse priors to suppress noise and
visual artifacts. It is based on estimating inverse kernels that are de-
composed into a series of 1D kernels. An augmented Lagrangian method
is adopted, making inverse kernel be estimated only once for each op-
timization process. Our method is fully parallelizable and its speed is
comparable to or even faster than other strategies employing FFTs.

Keywords: deconvolution, inverse kernels, numerical analysis, optimiza-
tion

1 Introduction

Deconvolution has been an essential tool for solving many image/video restora-
tion and computer vision problems. It was also used in astronomy imaging [24],
medical imaging [9], signal decoding, etc. In recent years, it is extensively applied
to systems in computational photography and image/video editing, including
flutter shutter motion deblurring [19], general motion deblurring [6, 30, 22, 4, 14,
10, 28, 25, 29, 21], coded aperture and depth [13, 32], and image super-resolution
[2, 23, 17], since many types of degradation can be partly modeled or approxi-
mated by convolution, where kernels are monotonically decaying low-pass filters.

While convolution is easy to apply, its inverse problem of properly deconvolv-
ing images is not that simple. Band-limited convolution kernels have incomplete
coverage in the frequency domain, which makes inversion ill-conditioned, espe-
cially under the existence of unavoidable quantization errors and camera noise.
Regularization can remedy this problem – see early work of Wiener filtering [27]
and Tikhonov deconvolution [26]. Existing methods are in two streams, which
have their respective characteristics.

Spatial Deconvolution Very few deconvolution methods are performed in the
spatial domain, owing to the high computational cost. Richardson-Lucy method
[20] does not involve regularization and thus may suffer from the noise and ring-
ing problems. Progressive approach [31] suppresses ringings by operations in
image pyramids. Good performance is yielded in sparse prior deconvolution [13],
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which requires to solve large linear systems. With the re-weighting numerical
scheme, the coefficient matrix of the linear system is no-longer Toeplitz and can-
not be accelerated using FFTs. This indicates that sparse-prior deconvolution,
albeit useful for preserving structures and suppressing ringings, is not translation
invariant.

Deconvolution in Frequency Domain The convolution theorem states that
spatial convolution can be computed by point-wise multiplication in frequency
domain, which brings out pseudo-inversion in the frequency domain [16]. Shan
et al. [22] fitted the gradient distribution using two convex functions. The half-
quadratic implementation [11] mathematically links general α-norms to a family
of hyper-Laplacian distributions. These iterative methods employ a few FFTs in
each pass. Each FFT is with complexity O(n log n) where n is the pixel number in
the image. Although frequency domain deconvolution is fast, it is non-trivial for
further speedup by parallelization. Nor is it suitable to handle irregular regions,
which however are common in object motion blur [3] and focal blur [13].

Our Contribution In this paper, we analyze the main difficulty of spatial
deconvolution and propose a new numerical scheme based on inverse kernels
to fill the gap between recent frequency-domain fast deconvolution and spatial
pseudo-inverse. They are inherently linked in our system by introducing kernels
constructed according to regularized optimization. The new relationship enables
empirical strategies to inherit the nice properties in these two streams of work
and to significantly speed up spatial deconvolution.

Although several useful sparse gradient priors may not lead to translation in-
variant process for deconvolution. We found it is possible to approximate them
with a series of operators that are indeed spatially translation invariant. Ac-
cordingly, we propose an effective numerical scheme based on the augmented
Lagrangian multipliers [15, 1] and kernel decomposition [18]. The resulting oper-
ations are no more than estimation of a set of 1D kernels that can be repeatedly
applied to images in iterations.

Unlike all previous fast robust deconvolution techniques, our method works
spatially and has a number of advantages. 1) It is easy to implement and paral-
lelize. 2) It runs comparably with or even faster than FFT-based deconvolution
for high-resolution images. 3) This method can deal with arbitrarily irregular
regions without much computation overhead. 4) Visual artifacts are much re-
duced.

We apply our method to applications of extended depth of field [12], motion
deblurring [29], and image upscaling using back projection [8].

2 Motivation and Analysis

To understand the inherent difference between spatial and frequency domain
deconvolution, we begin with the discussion of convolution expressed in the form

y = x ∗ k + ǫ,
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Fig. 1. Illustration of regularized inverse filters. (f). (a) is a Gaussian blurred image.
(b)-(d) are the restored images by convolving the regularized inverse filter, Wiener
deconvolution, and 1D separated Wiener deconvolution. (e) shows the Gaussian kernel.
(f) shows the direct inverse filter, and regularized inverse filter from top down. (g)
contains 1D scan lines of the two inverse filters in (f). (h) shows the close-ups of (c)
and (d).

where k is the kernel, y is the degraded observation, x is the latent image, ∗
refers to the convolution operator, and ǫ indicates additive noise.

We first explain the inverse kernel problem using the simple Wiener decon-
volution and then discuss the issues in designing a practical spatial solver using
sparse gradient priors, which is effective to suppress noise and visual artifacts.

2.1 Spatial Inverse Kernels for Wiener Deconvolution

Wiener deconvolution introduces a pseudo-inverse filter in frequency domain,
expressed as

W =
F (k)

|F (k)|2 + 1

SNR

, (1)

where F (·) denotes Fourier transform and F (·) is its complex conjugate. SNR
represents the signal to noise ratio that helps suppress the high frequency part
of the inverse filter. The restored image is thus

x = F−1(W · F (y)), (2)

where F−1 is the inverse Fourier transform.
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Albeit efficient, restoration using FFTs loses the spatial information as dis-
cussed above and could be less favored in several applications. This motivates
us to approximate this process using pseudo-inverse w in the spatial domain,
expressed as

x = F−1(W ) ∗ y = w ∗ y, (3)

where w is the latent (pseudo) spatial inverse kernel. It is known in signal pro-
cessing that this task cannot always be accomplished given an arbitrary W .
Taking the simple 2D Gaussian filter for example (Fig. 1(e)), its direct spatial
inverse kernel is a 2D infinite impulse response (IIR) filter, as shown in the top
of Fig. 1(f).

Contrarily, we found that the spatial counterpart of Wiener inversion, i.e.
F−1(W ), has a finite support, as shown in the bottom of Fig. 1(f). The differ-
ence is due to the involvement of regularization 1/SNR. It is actually a general
observation that inverse filters with regularization are typically with decaying

spatial responses. An 1D visualization is given in Fig. 1(g). The kernel with
regularization (bottom) decays quickly and thus has a compact support.

An image degraded by a Gaussian kernel (Fig. 1(e)) is shown in Fig. 1(a). The
restored image using the spatial inverse kernel with compact support is given in
Fig. 1(d), with visual artifacts near image border, which can be ameliorated by
padding. To further increase the sharpness and suppress artifacts, we turn to a
more advanced sparse gradient regularization.

2.2 Sparse Gradient Regularized Deconvolution

State-of-the-art deconvolution makes use of sparse gradient priors [13, 11], mak-
ing the overall computation more complex than a Wiener one. In this paper, we
propose a practical scheme to achieve spatial deconvolution even with these chal-
lenging highly non-convex sparse priors. We describe two issues in this process,
which concern kernel size and non-separability of regularized deconvolution.

Kernel Size Spatial inverse kernels could be of considerable sizes. For a
Gaussian kernel with variance σ = 3, the corresponding regularized inverse filter
using Eq. (1) has a finite support of 51× 51. Although it is independent of the
input image size, it still lays a large computational burden to 2D convolution.

Kernel Non-separability Many kernels are inherently non-separable. Even
for those that are separable, their inversions are not. For example, each Gaussian
kernel can be decomposed into two 1D filters, applied in the horizontal and
vertical directions respectively. However, its inversion is not separable due to
regularization. The road to speeding up regularized deconvolution by simply
performing 1D filtering is thus blocked.

The comparison in Fig. 1(c) and (d) illustrates the difference. There is a
2D inverse kernel of Gaussian created according to Eq. (1) and a separated
approximation using outer product of two 1D filters, formed also following Eq.
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(1). The restoration result using the re-combined 1D filters is shown in (d). It
contains obvious oblique-line artifacts (see the close-ups in (h)).

We address these two issues using kernel decomposition with SVD, presented
below.

3 Sparse Prior Robust Spatial Deconvolution

Sparse gradient regularized deconvolution works very well with a hyper Laplacian
prior [11]. It minimizes the function of

E(x) =
n
∑

i=1

(

λ

2
(x ∗ k − y)2i + |c1 ∗ x|

α
i + |c2 ∗ x|

α
i

)

, (4)

where i indexes image pixels. c1 and c2 are finite differential kernels in horizontal
and vertical directions to approximate the first-order derivatives. α controls the
shape of the prior with 0.5 ≤ α < 1. A common way to solve this function is to
employ a penalty decomposition

E(x; z1, z2) =

n
∑

i=1





λ

2
(x ∗ k − y)2i +

∑

j∈{1,2}

β

2
(zj − cj ∗ x)

2
i + |zj |

α
i



 , (5)

where z1 and z2 are auxiliary variables to approximate regularizers. The problem
approaches the original one only if β is large enough. The solver is thus formed
as iteratively updating variables as

zt+1

j ← argminzE(xt, zj , β
t), (6)

xt+1 ← argminxE(x, zt+1

j , βt), (7)

βt+1 ← 2βt. (8)

t indexes iterations. Since zj has an analytical solution (or can be found in look-
up tables) [11], the main computation lies in the FFT inversion step to compute
x, which gives

x = F−1

(
∑

j F (cj)F (zj) +
λ
β
F (k)F (y)

∑

j |F (cj)|2 +
λ
β
|F (k)|2

)

. (9)

It involves several FFTs. Basically, update of zj is performed in spatial domain
as it involves pixel-wise operations. So domain switch is unavoidable.

3.1 Penalty Decomposition Inverse Kernels

We expand Eq. (9) by decomposing the numerator and denominator and apply
inverse FFT separately. It yields

x = F−1

(

1
∑

j |F (cj)|2 +
λ
β
|F (k)|2

)

∗





∑

j

c′j ∗ zj +
λ

β
k′ ∗ y



 , (10)
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where c′j and k′ are adjoint kernels of cj and k by rotating these kernels by 180
degree, and j indexes differential kernels c. The operations c′j ∗ zj and k′ ∗ y are
now in spatial domain. k′ ∗ y is a constant independent of variables z and x.

(
∑

|F (cj)|
2 + λ

β
|F (k)|2)−1 in Eq. (10) is the inversion in the frequency do-

main. Its domain switch to pixel values, in fact, corresponds to a spatial inverse
kernel. The regularization makes its finite support exist. So it is possible to
estimate spatial inverse kernels corresponding to this term, i.e.,

wβ = F−1

(

1
∑

j |F (cj)|2 +
λ
β
|F (k)|2

)

. (11)

This process raises a technical challenge. Because β varies in iterations, wβ needs
to be re-estimated in each pass. A series of spatial inverse filters thus should be
produced, which are not optimal and waste much time.

3.2 Augmented Lagrangian Inverse Kernels

To fit the spatial processing framework, we adopt the augmented Lagrangian

(AL) method [15, 5] to approximate deconvolution. AL was originally used to
transform constrained optimization to an unconstrained one with the conven-
tional Lagrangian and an additional augmented penalty term. Specifically, we
transform Eq. (4) into

E(x; zj , γj) =

n
∑

i=1





λ

2
(x ∗ k − y)2i +

∑

j∈{1,2}

|zj |
α
i

+
∑

j∈{1,2}

β

2
(zj − cj ∗ x)

2
i − 〈γj , (zj − cj ∗ x)〉i



 , (12)

where the term in the second row is the augmented Lagrangian multiplier specific
for this problem. 〈·〉 is the inner product of two vectors. The major difference
from the original penalty decomposition optimization is that here the update
of γj prevents β from varying while the optimization still proceeds nicely. The
iterative solver is given by

zt+1

j ← argminzE(xt, zj , γ
t
j), (13)

xt+1 ← argminxE(x, zt+1

j , γt
j), (14)

γt+1

j ← γt
j − β(zt+1

j − cj ∗ x
t+1). (15)

From the convergence point of view, the AL method has basically no difference
with penalty decomposition. But it is much more suitable for our deconvolution
framework, in which β can be fixed, resulting in the same inverse kernel in all
iterations.
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Fig. 2. Separating filters. A spatial inverse filter shown in (a) can be approximated
as a linear combination of a few simpler ones as shown from (b)-(e). Each of them is
separable. The finally restored image in (a) can be formed as a linear combination of
images restored by these simple filters respectively.

By re-organizing the terms, we get an expression for the target image:

x = F−1

(

1
∑

j |F (cj)|2 +
λ
β
|F (k)|2

)

∗

F−1

(

∑

i

F (cj)(F (zj)−
1

β
F (γj)) +

λ

β
F (k)F (y)

)

,

= wβ ∗





∑

j∈{1,2}

c′j ∗ (zj −
1

β
γj) +

λ

β
k′ ∗ y



 , (16)

where wβ denotes the same spatial inverse filter defined in Eq. (11). The differ-
ence is that β in this form no longer varies during iterations. c′j ∗(zj−

1

β
γj) can be

efficiently computed using forward/backword difference. k′ ∗ y is a constant and
can be computed only once before the iteration. wβ is a spatial inverse kernel
that can also be pre-computed and stored.

It seems now we successfully produce workable inverse kernel without heavy
computation spent to re-estimating it in each iteration. But there are still t-
wo aforementioned size the separability issues that may influence deconvolution
efficiency. We further propose a decomposition procedure to address them.

Inverse Kernel Decomposition Kernel decomposition techniques have been
widely explored. Steerable filters [7] decompose kernels into linear combination
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of a set of basis filters. Another kernel decomposition is based on the singular
value decomposition (SVD) of wβ by treating it as a matrix [18]. Compared to
steerable filter, it is a non-parametric decomposition for arbitrary filters.

Given our spatial kernel wβ , we decompose it as wβ = USV ′, where U and
V ′ are unitary orthogonal matrices, V ′ is the transpose of V , and the matrix S
is a band-diagonal matrix with nonnegative real numbers in the diagonal. We
use f l

u and f l
v to denote the lth column vectors of U and V , which in essence are

1D filters. wβ is expressed as

wβ =
∑

l

slf
l
uf

l
v

′
. (17)

Convolving wβ with an image is now equivalent to convolving a set of 1D kernels
f l
u and f l

v. It can be efficiently applied in spatial domain where the number of
filters is controlled by the non-zero elements in the singular value matrix, in line
with the rank of the kernel.

If a kernel is spatially smooth, which is common for natural images, the rank
can be very small. It is thus allowed to use only a few 1D kernels to perform
deconvolution. Note that we can even lower the approximation precision by
dropping small non-zeros singular values for further acceleration. One example
of the kernel and its decomposition is shown in Fig. 2. The filtered images are
shown together with their separable filters. In this examples, 7 separable filters
are used to approximate the inverse regularized Gaussian, which verifies that
most inverse kernels are not originally separable.

3.3 More Discussions

Our spatial deconvolution is an iterative process. For each deconvolution process,
we only need to use SVD to estimate wβ as several 1D kernels once. If the kernel
was decomposed before, wβ is stored in our files for quick lookup. In this regard,
common kernels, such as Gaussians, can be pre-computed to save computation
during deconvolution.

The spatial support of the 1D inverse kernels depends on the amount of
regularization,i.e. the weight λ. For noisy images, λ is set small, corresponding
to strong regularization. Accordingly, the size of inverse kernels is small. In
practice, the support of 1D kernels is estimated by thresholding insignificant
values in the kernel and removing boundary zero values, which are determined
automatically once λ is given.

The pseudo-code for inverse kernel deconvolution is provided in Alg. 1.

4 Experimental Validation

We evaluate the system performance with regard to running time and result
quality. Our main objective is to handle focal, Gaussian or even sparse motion
blur. In our implementation, primary parameters in Eq. (12) are set as follows:
λ ∈ [500, 3000], depending on the image noise level; β is fixed to 10 for all
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Algorithm 1 x = FastSpatialDeconvolution(y, k)

1 wβ ← real

(

F−1

(

1
∑

i |F (ci)|
2+λ

β
|F (k)|2

))

2 {sl, f
l
u, f

l
v} ← svd(wβ)

3 Discard {sl, f
l
u, f

l
v} pairs with sl below a threshold

4 x1 ← y, γ1 ← 0
5 for t = 1 to maxIters
6 do zt+1

i ← argminzE(xt, zi, γ
t
i)

7 a←
∑

i∈{1,2} c
′
i ∗ (z

t+1
i − 1

β
γt
i) +

λ

β
k′ ∗ y

8 xt+1 ← 0
9 for l = 1 to length({sl})

10 do xt+1 ← xt+1 + sl · a ∗ f
l
u ∗ f

l
v

′

11 γt+1
i ← γt

i − β(zt+1
i − ci ∗ x

t+1)

Table 1. Running time (in seconds) and PSNRs for different methods

Image Size RL IRLS TVL1 Fast PD Ours

325x365 0.91 85.83 7.50 0.59 0.57

1064x694 2.28 241.34 22.20 2.00 3.27

1251x1251 6.19 537.89 54.30 4.61 7.30

PSNRs 20.2 24.3 22.7 23.3 23.7

images; totally 5 iterations are enough in practice. We compared our method
with others, including the spatial-domain Richardson-Lucy (RL) deconvolution,
IRLS [13] (short for the iterative re-weighted least squares) approach, TVL1
deconvolution [28] and the fast deconvolution [11], denoted as PD for “penalty
decomposition”. The TVL1 method is implemented in C language and all the
other four methods are implemented in MATLAB. We run 20 iterations for the
standard RL. All other methods are based on the authors’ implementation with
default parameters.

Running time is obtained on different sizes of images. In total, we collect
10 natural images with different resolutions. They are blurred with Gaussian
filters with variance σ ∈ {1, 2, 3, 4, 5} respectively. Small Gaussian noise is added
to each image. Running time for three resolutions is reported in Table 1. Our
method is similarly fast as PD employing FFTs and is a magnitude faster than
IRLS and TVL1. Our method updates z with analytical solutions. It can be
further sped up by using a look-up table. As wβ is pre-computed, we do not
include its estimation time in the table. In our experiments, a 51× 51 kernel is
computed in 0.1 second. The final PSNRs of all the 10 examples are included in
Table 1.

We show in Fig. 3 a visual comparison along with close-ups for different
methods. Our result is comparable with the sharpest one while not containing
extra visual artifacts.



10 L. Xu, X. Tao and J. Jia

(a)Input (b) Richardson-Lucy (c) IRLS

(d) TVL1 (e) Fast PD (f) Ours

Fig. 3. Visual comparison. Similar quality results manifest that our method does not
introduce additional visual artifacts.

Fig. 4. Sample motion and focal blur kernels for validation.

Statistics of Filters We now present the statistics of the 1D filters wβ learned
from different types of kernels. We collected a set of filters in real motion blur,
representative Gaussian convolution, and natural out-of-focus. The 8 motion
blur kernels are from [14]. The Gaussian blur kernels are with different scales,
controlled by variance σ ∈ {1, 2, 3, 4, 5}. We also collect from internet the real
focal blur kernels. We normalize all of them to size 35× 35. A few examples are
shown in Fig. 4.

The statistics in Table 2 indicate that motion deconvolution typically requires
more 1D kernels to approximate the inverse filter than others, due primarily to
large kernel variation and complex shapes. Convolving tens of kernels that ap-
proximate wβ is in fact a completely parallel process and can be easily accelerated
using multiple-core CPU and GPU.

The number of 1D kernels is determined by thresholding the singular values
and dropping out insignificant ones. Varying the threshold results in different
numbers of 1D kernels and thus affects the performance. We show in Fig. 5 how
the threshold affects the quality of restored images. One threshold can be applied
to different types of kernels to generate reasonable results. We also note based
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Table 2. Kernel decomposition statistics. “Average number” refers to the average
number of non-zero singular values, i.e., the number of 1D filters used. “Average length”
is the length of each 1D kernel.

Type Avg. number Avg. length

Motion 36.4 110.3
Gaussian 8.3 71.2

Out-of-focus 15.7 87.8

19

21

23

25

27

29

31

-3.00-2.66-2.33-2.00-1.66-1.33-1.00-0.66-0.33

Gaussian

Out-of-focus

Motion

P
S

N
R

Singular Value Threshold (log)

Fig. 5. PSNRs versus singular value thresholds for different types of kernels. The sin-
gular value thresholds are plotted in a logarithmic scale.

on Table 2 that one threshold may generate different numbers of 1D kernels
depending on the structure and complexity of the original convolution kernels.

5 Applications

We apply our method to a few computer vision and computational photography
applications.

5.1 Deconvolution-Intensive Super-Resolution

Iterative back-projection [8] is one effective scheme to upscale images and videos,
and is fast in general. In this process, reconstruction errors are back projected in-
to the high resolution image through interpolation and deconvolution, expressed
as

ht+1 = ht + (l − (ht ∗G) ↓) ↑ ∗p, (18)

where G is a kernel that could be Gaussian [8] or non-Gaussian [17], h is the
target high-resolution image and l is its low-resolution version. ↓ and ↑ are simple
downscaling and upscaling with interpolation operations. p is the pseudo-inverse
of the kernel. A good p positively influences high-quality image super-resolution.
So we substitute our spatial deconvolution for p, which counts in regularization
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(a) Input (b) Back projection [8] (c) Ours

Fig. 6. Super-resolution by back-projection.

in deconvolution. It produces the results shown in Fig. 6. They demonstrate the
usefulness of our inverse kernel scheme, as visual artifacts are suppressed.

5.2 Extended Depth of Field

The proposed method can be applied to removal of part of focal blur. We employ
it in the extended depth of field photography [12], which generates a blurry image
for each depth layer and restores it using deconvolution. Blurry image generation
is achieved by controlling the motion of the detector during image integration or
rotating the focus ring. Since the resulting blur PSFs belong to the generalized
Gaussian family, they can be efficiently computed using our spatial scheme.
Fig. 7 shows two examples. It takes 1.7s by our method on a single CPU core
to produce the results shown in (b) with resolution 681× 1032. In comparison,
the fast deconvolution method [11] takes 2s to produce the results in (c). Our
method can be fully parallelized to much speed up computation.

5.3 Motion Deblurring

Motion blur kernels are in general asymmetric, corresponding to a larger number
of 1D kernels in our decomposition step. It reveals the non-separable nature of
motion kernels. Our inverse kernel scheme is still applicable here thanks to the
independence of each 1D filtering pass. We show in Fig. 8 the IRLS deconvolu-
tion results of [13] and our inverse filter results. The ground truth clear images
and motion blur kernels are presented in the original paper [14]. While both ap-
proaches work in spatial domain, ours takes 0.5s to process the 255×255 images,
compared to the 70 seconds by the IRLS method.

5.4 Real-time Partial Blur Removal

Our method directly helps partial image deconvolution. Fourier transform re-
quires square inputs and any error produced after domain switch will be prop-



Inverse Kernels for Fast Spatial Deconvolution 13

(a) Input (b) Ours (c) PD [11]

Fig. 7. Reconstructed pictures from extended depth of field cameras.

agated across pixels due to the lack of spatial consideration. Our method does
not have these constraints. Our current implementation can achieve real-time
performance on 130× 130 patches on a single CPU core. It is notable that any
shapes of regions can be handled in this system. Our empirically processed re-
gions are slightly expanded from the user marked ones to include more pixels in
optimization in order to avoid boundary visual artifacts.

One example is shown in Fig. 9, where a book is focal blurred. We restore a
patch using our method, which does not introduce unexpected ringing artifacts.
Our method takes only 0.07 second to process the content, compared with 0.4
second needed in the FFT-based method [11] to process all pixels within the
tightest bounding box enclosing the selected region. The close-ups are shown in
(c) and (d). The difference is caused by processing only the marked pixels by
our method and processing all pixels in the rectangular bounding box by the
FFT-involved method.

6 Conclusion

We have presented a spatial deconvolution method leveraging the pseudo-inverse
spatial kernels under regularization. Fixed kernel estimation is achieved using
the augmented Lagrangian method. Our framework is general and finds many
applications. Its impact is the numerical bridge to connect fast frequency-domain
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(a) Input (b) IRLS [13] (c) Ours

Fig. 8. Motion deblurring examples.

(a) Input (b) Our result (c) Close-up (Ours) (d) Close-up (PD)

Fig. 9. Partial Blur Removal. In (a), we mark a few pixels for deconvolution. The result
is shown in (b) with the close-up in (c). The FFT-based method (PD) yields the result
shown in (d) by devolving all pixels in the bounding box.

operations and robust local spatial deconvolution. Our method inherits the speed
and location-sensitivity advantages in these two streams of work and opens up
a new area for future exploration.

The method could be amazingly efficient if these 1D kernel bases involved
in decomposition are handled by different threads in the parallel computing
architecture. It works well for general Gaussian and other practical motion and
focal blur kernels. One direction for future work is to investigate spatially varying
inverse kernels for complex blur.
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