
Break Ames Room Illusion: Depth from General Single Images

Jianping Shi1∗ Xin Tao1∗ Li Xu2∗ Jiaya Jia1∗
1 The Chinese University of Hong Kong 2 SenseTime Group Limited

(a) Input (c) Two viewpoints in 3D(b) Blur Scale Map

Figure 1: The photo in (a) creates an illusion that a giant is going to tread on people. We infer depth from this single image as shown in (b)
using special cues to be discussed later, which interprets this “forced perspective image” correctly from a geometry-layer point of view in (c).

Abstract

Photos compress 3D visual data to 2D. However, it is still possible
to infer depth information even without sophisticated object learn-
ing. We propose a solution based on small-scale defocus blur inher-
ent in optical lens and tackle the estimation problem by proposing
a non-parametric matching scheme for natural images. It incorpo-
rates a matching prior with our newly constructed edgelet dataset
using a non-local scheme, and includes semantic depth order cues
for physically based inference. Several applications are enabled on
natural images, including geometry based rendering and editing.

Keywords: small-blur estimation, depth from defocus, single-
image depth, out-of-focus

1 Introduction

Pictures remove depth information. Human visual perception fol-
lows semantic inference to roughly conjecture which object is close
when one watches monocular videos or images, which has been
commonly exploited in illusion generation involving “forced per-
spective”. For example, in The Lord of the Rings movies, characters
seem bigger or smaller than what they actually are by using special
settings and different distances during the shot.

The famous experiment named the Ames room illusion makes a per-
son standing in one corner seem to be a giant, while another one in
the other corner appears to be a dwarf, when the room is viewed

∗e-mail:{jpshi,xtao,xuli,leojia}@cse.cuhk.edu.hk

with one eye through a pinhole – i.e., cues from stereopsis are elim-
inated. An illusion is given in Fig. 1(a) where a gigantic foot almost
tramples on the persons. But actually they are at different distances.

In previous work, inferring depth from monocular data was
achieved by combining multiple cues [Saxena et al. 2009; Eigen
et al. 2014; Ladicky et al. 2014], estimating obvious out-of-focus
blur [Bae and Durand 2007; Zhu et al. 2013], using specially de-
signed hardware [Levin et al. 2007], or by learning [Karsch et al.
2012]. The success of these approaches relies on their respective
requirements or assumptions. For instance, learning-based meth-
ods need large amounts of training data; blur estimation requires
purposely generated defocus. They may not work well when the
scene is different from the assumed types, such as the example in
Fig. 1(a). We provide more discussions in Section 2.

In this paper, we address this challenging illusion problem with a
monocular cue. By exploring small-scale defocus properties which
will be detailed in Section 4, we circumvent depth learning, spe-
cial hardware, strong defocus or stereo configuration. Our method
works on common photos produced from different devices, includ-
ing mobile phones. In the example in Fig. 1, our estimated distances
for the persons and the foot are clearly different, based on which
further geometrical scene understanding can be accomplished.

Our main contributions are as follows. First, we provide analysis
of the optical sharpness property and its visual phenomena in pho-
tos. Second, we propose an effective non-parametric estimator, to-
gether with an edgelet primitive dataset, to robustly recognize spa-
tial sharpness variation. Our estimation is robust against visual ar-
tifacts. Third, we propose a solver with non-local smoothness con-
nection, and establish correspondence between the estimated blur
scale map and the inherent depth estimate. Finally, we demonstrate
a few applications given single input images, including refocusing,
stereopsis synthesis and geometry-aware image editing.

2 Related Work

We review previous work on depth estimation from monocular nat-
ural image/video and explain their respective requirements. While
stereo matching [Scharstein and Szeliski 2002] and depth from ac-
tive sensors [Khoshelham and Elberink 2012] are popular, they re-

Figure 2: A nicely focused image taken by an iPhone 6 camera and
its closeup regions. Subtle defocus blur effect is noticeable when
viewed closely. The top two patches have about 5 pixel width blur,
where the bottom one is with about 8 pixels.

quire multiple inputs or special hardware, and thus are not applica-
ble to our problem.

Data-driven Single Image Depth Estimation Several methods
incorporate various data-driven cues to estimate depth. Wu et
al. [2008] presented an interactive system to infer surface nor-
mal with shading information. Occlusion is utilized in [Hoiem
et al. 2007] for coarse depth order inference. Recently, RGBD
data [Karsch et al. 2012; Eigen et al. 2014] were involved for depth
estimation for specific scenes. Su et al. [2014] built a 3D object
dataset for object depth inference. Karsch et al. [2012] transferred
depth of similar scenes from video data. These methods need user
interaction, special computation environment, or a large set of data
from similar scenes for reference while our solution does not.

Depth from Defocus Depth from defocus is a well-studied prob-
lem. Generally two or more images captured from the same posi-
tion but with different focus are used to infer depth. Early work like
[Subbarao and Surya 1994] is a convolution/deconvolution trans-
form method. Watanabe and Nayar [1998] introduced a class of
broadband operators for passive depth from defocus. Ziou and De-
schenes [2001] proposed a local image decomposition technique.
Schechner and Kiryati [2000] compared depth-from-defocus and
stereo methods. Our method takes only one natural image for depth
layer inference, which can handle more data.

Coded Aperture In computational photography, coded aperture
is popular to accurately estimate depth in order to produce all-in-
focus images. The technique has been applied to image deconvo-
lution [Levin et al. 2007] and light field refocusing [Veeraraghavan
et al. 2007; Liang et al. 2008]. Differently designed coded aper-
tures were also analyzed [Zhou and Nayar 2009] and extended in
[Zhou et al. 2009]. Cossairt [2010] inserted an optical diffuser be-
tween camera lens and the sensor to extend depth-of-field. While
these computational-camera approaches work very well, they re-
quire necessary hardware modification.

Defocus Blur Estimation Several previous methods also directly
estimate defocus blur. Elder and Zucker [1998] assumed a step edge
and a Gaussian blur kernel for defocus blur estimation. The first and
second order derivatives from steerable Gaussian basis filters were
used to calculate the center line of edges and blur responses. Saxena
et al. [2005] proposed a supervised learning approach by comparing
filter responses of image patches. Bae and Durand [2007] applied

Figure 3: Example patches affected by small defocus blur for eval-
uating existing defocus estimation methods.

bilateral filtering to remove outliers, and employed an MRF to es-
timate a dense defocus map. Tai and Brown [2009] compared edge
gradient magnitudes to evaluate the amount of out-of-focus blur.

The other line is to model local statistics. Shi et al. [2015] detected
small blur via sparse reconstruction statistics. Its major goal is to
find the slightly blurred region. Its estimation, as a by-product, is
not accurate enough. Zhuo et al. [2011] measured defocus blur
according to the response of Gaussian blur in defocused regions.
The method of [Zhu et al. 2013] generalized that of [Chakrabarti
et al. 2010] to model the posterior of Gabor filter bank coefficients.
These approaches were designed for blurred images, where edges
in focused and out-of-focus regions are significantly different. Our
data do not satisfy these requirements and thus could degrade their
performance. More discussions will be provided in later sections.

3 Our Monocular Depth Cue and Its Analysis

Different from above methods, ours is based on exploiting small-
scale defocus blur that exists in almost all photos. The blur kernel is
an optical spot caused by a cone of light from a point source, which
does not completely focus on the sensor plane. In this regard, all
surface points that are not located exactly on the focal plane cause
the blurriness. The largest blur scale or equivalently the largest size
of the spot, which is still perceived by human as one point at a
viewing distance, is used to determine the depth of field (DoF).

The small-scale defocus blur controls the level of sharpness on de-
tails, which is taken as our monocular cue for depth estimation.
Taking off-the-shelf cameras as an example, Canon 5D Mark III
has a pixel pitch of 0.00625mm. It means a light point could span
up to 0.03/0.00625 = 4.8 pixels, where the 0.03 is the diagonal
measure of a 35mm camera format. For the new iPhone cameras,
the blur is with diameter about 4.0 pixels. Fig. 2 gives an illustra-
tion. The input natural image has small difference on the sharp-
ness level due to blur variation of different locations. This type of
change actually provides us surprisingly valuable information for
understanding how depth varies.

Our defocus blur estimation differs from general point spread func-
tion (PSF) estimation in the following. The general PSF-analysis
approaches aim at restoring motion blur and significant defocus
PSFs, which are generally stronger blur than what we aim to deal
with. Our subtle defocus blur here, on the other hand, is usually
caused by optical lens, appears in a smaller scale, and exists nearly
in all natural images. We have extensively evaluated existing meth-
ods for PSF analysis and found they do not perform satisfyingly on
our data mainly due to the fact that structure variation caused by
subtle defocus blur is small.

Also since this defocus blur effect is spatially-varying, common
spatially-varying deblurring methods deal with motion blur with
necessary motion and depth assumptions. In another line, several
methods directly estimate blurriness from local patches. They also
assume blur is strong enough so that the employed metrics, such

(d) Edgelet Primitive Set

0

0.5

1

1.5

(b) Edge (c) Gradient Magnitude
0

0.5

1

1.5

0

0.5

1

1.5

Iteration 1(g) Final Blur Scale Map Iteration 2

(f) S
o

lv
e t

(e
) S

o
lv

e b

(a) Input

(h) Final Map

0

0.5

1

Figure 4: Overview of our method. We detect edges in (b) from input (a). They are fitted into our matching and optimization framework that
includes edgelet primitives (d). During alternating optimization, we solve for the sparse edgelet blur scale map shown in (e) and the global
estimates in (f). The final depth map (h) is constructed by another optimization pass involving the final defocus blur scale estimate (g).

as gradient edge moments, local statistics and distribution informa-
tion, can be used.

We conduct an experiment to evaluate these methods. We first syn-
thesize 2,000 different patches that are affected by the this type of
blur (a few representatives are shown in Fig. 3). Then we apply
local edge gradient metric [Bae and Durand 2007] and patch statis-
tics [Zhu et al. 2013] to these data. The estimated blur scales are
with 42% and 33% errors respectively. They manifest it is still diffi-
cult to apply existing blur analysis to small blur estimation. Differ-
ent from these methods, we propose a more suitable matching and
optimization framework in what follows to address this problem.

4 Our Solution

Because the scale of general defocus blur is small and it is spa-
tially varying by nature, its estimation on flat regions cannot be
reliable. We start our method from edges and analyze the appear-
ance it presents. Then the estimates are refined and propagated to
other pixels for dense point inference. Our main steps are explained
below and in Fig. 4.

• To estimate the blur scale level, fitting a parametric model
on local statistics is not suitable because the blur patterns of
camera lens are not spatially differentiable. The Gaussian ap-
proximation does not work on such small scales. We resort to
non-parametric matching with edgelet primitive data.

• Our edgelet primitive set is constructed by sampling edge seg-
ment patches with varying directions, curvatures, and blur
scales. It provides basis for preliminary local matching. The
matching error is already a useful indicator on whether a patch
contains an ideal underlying edge or not.

• With the edge primitive data, we establish a global function
for dense scale estimation via matching. Since the objective
function is highly non-convex and the matching space is large,
we propose an effective numerical solver.

We elaborate on these steps in the following. We note our small-
scale defocus blur estimation mainly reveals the change of blur
scales among different pixels in one image. This type of spatial
difference is essential to understand relative geometric connection
among points.

4.1 Edgelet Primitive Set Ω

To capture how edges change under the subtle defocus blur effect,
we construct a set of edgelet primitives with respect to scale varia-
tion. This edgelet set makes it possible to circumvent a parametric
blur generation model that is hardly accurate when blur is small.
Also our blur model does not assumes differentiable Gaussian ker-
nels, but instead follows the finding of Watanable and Nayar [1998],
which indicates general lens pillbox distributions are in shape of
disks. Our experiments show that this disk kernel setup reduces up
to 50% errors than Gaussian in our 200 tryouts.

We construct a edgelet primitive set Ω which considers possible
edge variations. For different edge segments, we vary three separate
dimensions including blur scale b, direction θ, and curvature r. The
details on how to establish the set are provided in Section 6. A few
examples are shown in Fig. 5. In total, our edgelet primitive set
contains over 20,000 samples.

Preliminary Matching with Ω Now for any patch Θ(I) in an
input image I , finding the corresponding edgelet is expressed as

argmin
θ,r,b

∑

i∈I

‖f(Θ(∇Ii))− T (θ, r, b)‖, (1)

where T (θ, r, b) describes the edgelet template with three parame-
ters. Θ(Ii) is the local patch centered at pixel i. Θ(∇(Ii)) denotes
gradient magnitudes of Θ(Ii). f(·) is the normalization function.
We normalize the intensity by dividing its 90% percentile to remove
outliers. Both T (θ, r, b) and Θ(∇(Ii)) are vectorized. ‖ · ‖ is the
L2-norm operator to compute Euclidean distance.

Advantages and Following Issues There are several benefits
for this matching process. First, instead of computing blur param-

Blur degree

Direction

Curvature

Input

Normalized
Gradient

Edgelet
Primitive

Most Matched
Primitive

Figure 5: The edgelet matching process. The input is first normal-
ized in gradients. Then it finds its nearest neighbor in our edgelet
set. The edgelet primitives vary in the three dimensions of direction
θ, curvature r, and scale b.

eters by solving an inverse problem, edgelet matching is a forward
operation without difficult kernel estimation. Second, the edgelet
primitives do not have constraints on the kernels used. We adopt
the disk model instead of the Gaussian one. Finally, the matching
cost in Eq. (1) reveals how well the template models the local struc-
ture. So it can easily screen out edges that are obviously different
from our primitives during estimation and guarantee the quality of
edges that are used.

To show this matching process can actually ensure edge quality,
we gather patches and coarsely classify their contained edges as
step, soft, crossing, and texture categories manually in 10 different
scales as shown in Fig. 6(a). We apply above matching process to
find the nearest neighbors in our primitive set. The average errors
for the four categories of edges are respectively 1.02, 2.23, 4.27,
and 3.26. The distribution for natural image patch matching error
in (b) shows that ideal patches usually have small errors, which can
be easily classified from others based on the matching errors.

We note, albeit profitable, applying matching of Eq. (1) to blur scale
estimation is not trivial. Only patches with high-quality edges find
decent matches, which are actually sparse in our image data. We
address this problem in our system and efficiently propagate these
sparse evidences to the whole image while rejecting errors caused
by imperfect edge detection.

4.2 Our Model

To reject large-error matching results, we reformulate Eq. (1) as
probability inference as

p(I |θ, r, b) ∝
∏

i

{exp (−ρ(‖f(Θ(∇(Ii)))− T (θ, r, b)‖))mi}, (2)

where mi is a binary value for each pixel i, which is 1 if this is an
edge point and 0 otherwise.

We obtain edge points by the edge detector of [Maini and Sohal
2006], which is robust to noise and outliers. We show an edge map
in Fig. 7. Some of them are corners and texture, which cannot be
well matched to our edgelet primitives since our data do not include
these complicated examples. We thus apply a robust function ρ to
suppress the influence of imperfect match. ρ(x) is expressed as

ρ(x) = ln((1− e) exp(−|x|/σ) + e), (3)

0 1 2 3 4 5 6 7
x 10

4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
e
a
re

st
 D

is
ta

n
c
e

Patch

...

...

...

(b) Natural Image Error Distribution(a) Edge representative

Ideal

Soft

Crossing

Texture

Figure 6: Edgelet matching errors reflect quality of edges. (a) Edge
examples in our four coarse categories. (b) shows the natural image
patch matching error distribution. The patches are sorted accord-
ing to matching errors, where the x-axis values are accumulated
patch numbers and y-axis ones are errors for best matchers. Simi-
lar types of edges gather and roughly fall into similar ranges of the
matching error curve.

(a) Input (b) Edge (c) Closeup

Figure 7: Edge detection outputs texture and corners, which are
not contained in our edgelet primitive set due to their structure
complexity.

where σ is the error-control parameter, and e is the basis of the nat-
ural logarithm. With the robust function in Eq. (3), edge segments
with large errors in matching are subdued in further inference.

Joint Posterior with Non-local Affinity The likelihood (2) is in-
corporated into the final joint posterior as

p(θ, r, b|I) ∝ p(I |θ, r, b)p(θ)p(r)p(b). (4)

For p(θ) and p(r), since we have no specific prior knowledge, they
simply follow uniform distributions. For p(b), as objects occupy a
group of pixels, blur scales should smoothly vary for most pixels.
We adopt a non-local prior as

p(b) ∝
∏

{i,j}∈W

exp(−wij |bi − bj |2), (5)

where W contains pixel pairs within each local window. wij =
exp(−|Ii−Ij |2/σI−|xi−xj |2/σx) captures the affinity between
two pixels with the bilateral distance measure. It also functions
as propagating sparse edge pixels blurriness to all others for input
natural images faithful to its edge distribution.

The pairwise weight wij actually defines the effective range of in-
fluence for the selected edge points. Local smoothness with re-
gard to only neighboring pixels cannot effectively propagate the
sparse blur estimates across texture and details. In contrast, non-
local regularization establishes much stronger connection between
pixels according to their distance in the feature space. This be-
comes especially important to solve our problem where the number
of edge estimates is not that large, which is further elaborated on in
Section 6.

Further Refinement Now the maximum of the joint posterior be-
comes

argmax
θ,r,b

p(I |θ, r, b)p(b). (6)

Since we only need to estimate the scale b, traditional inference
requires integration over r and θ, which is computationally costly.
We pose the problem as joint inference, written as

argmax
b

p(b|I) ≈ argmax
b
{max

θ,r
p(b, θ, r|I)}. (7)

4.3 Solver

After taking negative logarithm, the problem to solve for b becomes
∑

i

min
θ,r

miρ(‖f(Θ(∇Ii))−T (θ, r, b)‖)) +
∑

{i,j}∈W

wij |bi− bj |2.

(8)
It is still nontrivial in optimization since this function involves non-
convex penalties and non-local regularization. Discrete edgelet
matching in the non-convex terms and information propagation
from edges to all other pixels by non-local regularization can be
achieved simultaneously due to their different natures in optimiza-
tion.

Our scheme is to decouple these two different types of terms by
introducing an auxiliary variable t. It changes the function to
∑

i

min
θ,r

miρ(‖f(Θ(∇Ii))− T (θ, r, b)‖) +miη|ti − bi|2

+ α
∑

{i,j}∈W

wij |ti − tj |2.
(9)

This function approaches the original expression (8) when corre-
sponding ti and bi are exactly the same. The term η|ti − bi|2 is
used to penalize the difference between ti and bi. η is a weight.
Similar to the variable splitting strategy [Afonso et al. 2010], a very
large η makes ti and bi move towards each other. We increase this
weight in iterations to gradually tighten the connection between ti
and bi. Eq. (9) enables an alternating optimization process to up-
date the variables.

Scale b Computation When fixing t, Eq. (9) simplifies to

min
b
{
∑

i

min
θ,r

mi{ρ(‖f(Θ(∇Ii))− T (θ, r, b)‖) + η|ti − bi|2}}.

(10)
Regarding b, the global function is actually the sum of a few pixel-
wise functions

min
θ,r

mi{ρ(‖f(Θ(∇Ii))− T (θ, r, b)‖) + η|ti − bi|2}. (11)

It involves two terms – one for patch difference to minimize the
matching cost and the other is to reduce the distance between t and
b in the pixel level. They are seemingly different in global opti-
mization.

In fact, Eq. (11) can be understood differently based on the ob-
jective. We aim to estimate the values of b, corresponding to blur
scales. As discussed in Section 3 for primitive set construction, due
to the small scale of blurriness, we only consider 10 discrete values,
which already cover general cases up to one pixel accuracy (more
discussions in Section 6). For each possible value of bi with index
k, we find its nearest neighbor and compute the difference as

E(bi, k) = min
θ,r
{ρ(‖f(Θ(∇Ii))− T (θ, r, bi(k))‖), (12)

Algorithm 1 Algorithm to estimate blur scales.
Initialization t← 0
for l = 1 to maxiter do

b-problem
for each edge pixel i do

ε← 1E10
for each blur scale b(k) do

Compute E(b, k) using KD-tree for the first time
if E(b, k) + η|ti − b(k)|2 ≤ ε then

k∗ ← k, update ε
end if

end for
bi ← b(k∗)

end for
t-problem
Solve for t in Eq. (15) using conjugate gradient descent
η ← 1.5η

end for

where bi(k) denotes the kth value of bi. In the matching process,
we only need to vary θ and r to get the minimum matching differ-
ence. Then we store the temporary cost E(bi, k) + η|ti − bi(k)|2
for Eq. (11) given value bi(k).

When all the costs for bi are obtained, we find the smallest one. It is
guaranteed to be the minimum of Eq. (11) according to the compu-
tation procedure. We perform optimization for all pixels and even-
tually reach the global minimum for Eq. (10). Our nearest neighbor
search is built upon a fast algorithm [Muja and Lowe 2009] with
KD-tree acceleration.

We note that the robust function, which is in essence monotone,
does not alter its minimum during the nearest neighbor (NN) search.
We therefore use Euclidean distance in searching the NN without
changing the minimum. So in our algorithm, although the NN
search is performed in each iteration, the real computation is only in
the first pass and its result is stored for further employment without
any change. The overall inference is quite efficient.

Variable t Inference This step is to propagate sparse edge esti-
mates to the whole image with non-local constraints

∑

i

mi|ti − bi|2 +
α

η

∑

{i,j}∈W

wij |ti − tj |2. (13)

The function is quadratic; thus the closed-form solution exists. We
note W involves many pixel pairs. Generation of the affinity matrix
could be time and memory consuming, if not intractable. To address
this issue, we write the energy function in the matrix form

(tv − bv)
TM(tv − bv) +

α

η
tTv Wtv, (14)

where matrix M encodes the indicator information and matrix W
is the smoothing Laplacian. tv and bv are the variables in their
vector form. Taking derivatives on tv, we get

(M+
α

η
W)tv = Mbv. (15)

Computing tv involves matrix inversion of M+ α
η
W, which is not

necessarily sparse. We resort to a conjugate gradient (CG) method
in order to avoid direct inversion. The computational expensive step
in CG is to evaluate a matrix-vector product (M+ α

η
W)q given a

vector q. We employ an accelerated high-dimensional Gaussian
filter for fast computation [Xu et al. 2013].

Display Sensor

Lens

d1

d2

Blur Scale

df

Figure 8: A point causing small defocus blur could be in front of
or behind the object plane that is perfectly focused.

(a) Input

(d) Final Result(c) Occlusion Order

(b) Original Blur Scale Map

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

bf

Figure 9: Blur scale to depth. (a) Input image. (b) Estimated de-
focus blur scale map b. (c) Coarse depth order map by high-level
inference [Hoiem et al. 2007]. (d) Our final depth map.

The overall algorithm is sketched in Alg. 1. Variable t and b are up-
dated iteratively to finally approach each other. Intermediate results
are shown in Fig. 4(e) and (f). They improve quickly in only a few
iterations. Generally 5-8 iterations are enough for convergence.

5 Depth Order with Semantic Cues

Blur scale b can be mapped to scene depth z. The equation is

z =
hA

hA/f − A± b
, (16)

where h is the distance between lens and sensor plane. A is the
aperture diameter. f is the focal length.

Depth Order Problem Definition Operator ± in Eq. (16) gives
two possible depth choices in front of and behind exactly focused
object plane. Its meaning is that if one point is with a non-zero blur
scale, it could be closer to or farther from the camera than points
that are perfectly focused, as illustrated in Fig. 8. This is a practical
and important problem for depth inference from blur scales.

Depth Order Inference After algebraic operations, we get

b− bf = ±hA(1/z − 1/zf) := ±(d− df). (17)

zf is the distance, at which objects are perfectly in focus. We fur-
ther denote d = hA(1/z) and df = hA(1/zf) since we can com-
bine camera parameters h, A and f as a single unknown.

To estimate the depth sign map, we initially employ a high-level
semantic method [Hoiem et al. 2007] as guidance to infer very

1.3

1.4

1.5

1.6

1.7

1.8

(a) Input (c) Non-local prop(b) Local prop

Figure 10: Comparison of local and non-local propagation opti-
mization results.

coarse depth orders among regions. This method employs a con-
ditional random file (CRF) to compute foreground and background
labels for neighboring regions when they form an occlusion bound-
ary. One resulting map p is shown in Fig. 9(c). Obviously it does
not present pixel-level information and labels are coarse only for
several regions.

We take estimate p as a coarse prior for our depth sign estimation.
For each pixel i, we denote the binary sign variable as si, with its
value selected from {−1, 1}. Based on Eq. (17), Our blur estimate
b can be naturally linked to d as

di − df = si(bi − bf). (18)

In practice, both d and s are not known in prior. We thus make use
of the depth order map p to gather necessary information for their
computation. With the p map, intriguingly we can express

si · sign(bi − bf) = sign(di − df) ≈ sign(pi − pf), (19)

where operator sign(·) takes the sign. Variable s is now estimated
by minimizing the Potts model, written as

argmin
si

∑

i

|si·sign(bi−bf)−sign(pi−pf)|2+β
∑

{i,j}∈N

T (si 	= sj),

(20)
where N is the set of neighboring pixels and β is the smoothing
weight. T returns 1 when si 	= sj and 0 otherwise. So the entire
objective function is to select a suitable order under the guidance
of occlusion. The energy can be globally minimized using graph
cuts [Rother et al. 2004].

Our finally produced result with the depth order is shown in
Fig. 9(d) where the front doll is made closer to the camera. Af-
ter si is obtained, the normalized depth map can be recovered as

di = si(bi − bf) + df , (21)

given a reference df . In fact, we can choose any df since it only
affects where zero depth is set and does not change the relationship
between foreground and background.

6 More Discussions

Edgelet Primitive Set Construction and Evaluation The latent
edges are images sampled from the boundary of solid circles with
different radius r in order to introduce orientation and curvature
variation. Each patch is with size 13 × 13, sufficient to cover the
small blurriness. The edgelet primitives are also produced with 10
different blur scales [Watanabe and Nayar 1998] with about 1 pixel
interval. More scales are possible; but we found they are not nec-
essary due to the limit of accuracy in the inference procedure. Sub-
pixel accuracy after all may not be easily yielded in optimization.

(b) [Zhu et al. 2013](a) Input (e) Our result(c) [Bae and Durand]
0.5

1.5

2.5

3.5

1

2

3

4

(d) [Shi et al. 2015]

Figure 11: Comparison with other single image defocus blur estimation methods. The Blue region is clear and the red pixels are blurred.
The scale of the color bar indicates the blurriness.

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

(a) Input (c) [Hoiem et al. 2007](b) [Saxena et al. 2005] (d) Our result

Figure 12: Comparison with data-driven image depth inference methods. The blur region is close to camera, whereas the yellow one is from
afar. The scale of the color bar indicates the normalized depth.

Figure 13: 3D view synthesis based on our single-image estimate.

Local and Non-local Smoothness We compare results in
Fig. 10 of our method and the modified one by substituting the local
smoothness term

∏
exp(−wij |bi − bj |2) where i and j are neigh-

boring for the non-local one in Eq. (5). The local smoothness form
cannot propagate information similarly effective from sparse points
as ours. The local smoothing result is thus with errors for pixels
that are not close to any edge points.

Edge Smoothness Ambiguity There always exists ambiguity
when interpreting edge appearance. One patch in an image can be
either a latent sharp edge diffused by the defocus blur or a smoother
one affected by a smaller blurriness. There is no way to tell the dif-

ference from a single image. Our method also suffers from this
ambiguity. But empirically natural images do not contain wildly
changing edges, especially locally, which make our results mostly
reasonable and usable in the applications described in Section 7.

Parameter Setting In the first iteration, we set η in Eq. (10) as
zero to avoid cold start. Then in the subsequent t estimation proce-
dure in Eq. (13), η is recovered as 10, and gets 1.5 times larger in
each following iteration. α is set to 0.01. θ in Eq. (3) is set to 1 to
make edge segments with error over 2 suppressed.

Computational Cost Our proposed solver has two major phases.
The first is for edge-based defocus blur scale estimation. It needs
to find the nearest neighbors for k edge pixels among n primi-
tives. The KD-tree implementation can reduce the complexity to
O(k log n). To process an 800 × 1000 image, it generally needs
10 ∼ 15 seconds on a single core of the i7 3.4GHz CPU. The result
is stored and reused in subsequent iterations. The second phase is
the global propagation by solving a large linear system. By con-
jugate gradient, it takes about 3 seconds for each iteration and 20
seconds for the whole process.

7 Experiments

We first compare our method with others to estimate blur or depth
from single images or learning, and then show a few applications.

(b) Kinect Raw Depth (c) Rectified Kinect Depth

(e) Sony A7 depth after post-processing

(a) Kinect RGB

(d) Sony A7 RGB

Figure 14: Depth from Kinect. (a) and (b) are the raw output from
Kinect. (c) is the rectified depth aligned with the RGB image. (d)
is another RGB image from the Sony A7 camera. We align (a) and
(d) with the labeled matching points, and accordingly warp (c) to
obtain (e). The final image and depth pair are (d) and (e).

(a) Input (b) Initial depth (c) Final depth

Figure 15: Ground-truth depth from Stereopsis. (a) contains the
left and right images from the 3D camera. (b) is the initial stereo
matching result. (c) is the final depth after user correction.

7.1 Comparison with Defocus Estimation

Given the examples in Fig. 11, we compare our results with those
of defocus blur estimation methods [Bae and Durand 2007; Zhu
et al. 2013], which have been discussed in Section 3. We also add
comparison with recent small blur perception method [Shi et al.
2015]. For the first image, the boy’s left shoulder is in perfect focus.
The face is in depth of field, varying from left to right. Our result
in Fig. 11 contains this type of varying-depth information while the
other three do not. After novel view synthesis, our result is shown
in Fig. 13. The second example in Fig. 11 is the Ames room image.
We also show clear variation between the two persons.

Methods Rel Log10 RMSE RelOrder
[Bae and Durand 2007] 1.2880 0.3600 0.3528 0.0921
[Zhuo and Sim 2011] 1.2597 0.3178 0.3210 0.1506

[Zhu et al. 2013] 1.0775 0.5793 0.4383 0.0386
[Shi et al. 2015] 1.6756 0.2866 0.3055 0.1854

[Saxena et al. 2005] 1.0027 0.3170 0.3006 0.1288
[Hoiem et al. 2007] 1.4317 0.4621 0.4082 0.0160

Ours 0.8997 0.2637 0.2681 0.1954
Table 1: Quantitative evaluation on our data.

7.2 Comparison with Data-driven Depth Inference

We show results of data-driven depth inference [Saxena et al. 2005]
in Fig. 12(b). This approach has the vital need of proper data. When
there is no sufficient similar image examples for training, it could

(a) Input (b) Ground-truth (c) Our result

(d) [Bae and Durand 2007] (e) [Zhuo and Sim 2011] (f) [Shi et al. 2015]

(g) [Hoiem et al. 2007] (h) [Saxena et al. 2005] (i) [Zhu et al. 2013]

Figure 16: Visual comparison on our benchmark data.

fail. The results of region-based order cues [Hoiem et al. 2007]
in (c) are also coarser than ours, as this method relies on correctly
detected occlusion among layers. Relative depth difference may not
be well captured.

7.3 Quantitative Evaluation

We note it is difficult to quantitatively measure the depth estimate
because accurate depth information for a high-quality photo cap-
tured by phone and professional cameras is generally not available.
We put effort designing the following experiments.

Kinect Data We first use Kinect to obtain a few depth images
as ground-truth only for indoor scenes due to the infrared cam-
era mechanism. Because the accompanying RGB images are with
blurred edges, low dynamic ranges and strong noise, they do not
present the required small-blur effect and thus are not usable in our
method. We have to take another high-quality RGB image by a
Sony A7 camera corresponding to each depth map.

When taking these RGB images, we put the Sony camera the same
position as the Kinect and let the images cover the regions in the
depth maps. Because there is inevitable displacement of the two
cameras and difference on parameters such as focal length, ISO,
resolution, and white balance, after taking these images, we manu-
ally align depth from Kinect and the RGB images. One example is
shown in Fig. 14. We first align the raw depth-RGB pair captured
from Kinect in (a) and (b) using the official rectification API to ob-
tain the rectified depth (c). It is followed by a depth warping process
from (c) to (e), with the warping field constructed from manually-
labeled correspondences in (a) and (d) from the two cameras. Holes
and noise are further touched up in postprocessing.

We note error-free pixel-wise alignment is impossible to produce
even with labor-intensive manipulation. But these data are suffi-
ciently usable to understand how reasonable a depth estimate is. In
total, we produce 15 image-depth pairs using this strategy.

Stereopsis Data Another set of data are captured by a Fujifilm
Real 3D camera mostly for outdoor scenes. Their ground-truth
depth is obtained from stereo matching [Rhemann et al. 2011]. We
involve manual interaction as well to correct obvious mistakes and
misaligned boundaries. One example is shown in Fig. 15 where (a)
contain the input stereo images. The initial stereo matching result

(a) Input (b) Blur Scale Map (c) Refocus Result

Figure 17: Image refocus using our estimated blur scale maps. The black boxes highlight our focusing points.

(a) Input (c) Foreground (d) Background Color Removal(b) Blur Scale Map

Figure 18: Automatic foreground-background segmentation and background decolorization using our estimated blur map.

is shown in (b). Our final depth map after user touchup is shown
in (c) – many small errors are fixed. A total of 15 image pairs are
produced via this process.

Evaluation Based on this data, we quantitatively evaluate meth-
ods of [Bae and Durand 2007; Zhuo and Sim 2011; Zhu et al. 2013;
Shi et al. 2015; Saxena et al. 2005; Hoiem et al. 2007] and report
the results in Table 1. Our images include indoor & outdoor scenes
in different lightings, and contain objects with sharp & soft edges.

Table 1 manifests that our method performs reasonably under all
evaluation metrics including relative error (Rel), Log10 error, root
mean square error (RMSE), and relative depth order (RelOrder).
These metrics are explained in what follows.

For an image with N pixels, its i-th pixel has depth estimate di
compared with the ground-truth d∗. The relative error is defined as
1
N

∑
i (di − d∗i)/d. The Log10 error is set as

∑
i | log10(di) −

log10(d
∗
i)|/N and the root mean square error is denoted as√∑

i(di − d∗i)2/N for images with N pixels. The relative depth
order is to randomly sample 15,000 points in each image and com-
bine them with their 8 nonlocal neighbors to form 120,000 2-tuples.
Then the percentage of these tuples whose relative orders are con-
sistent with the ground truth is counted.

A visual comparison with defocus and data-driven based methods
on our data is shown in Fig. 16. For all images, the focal point is set
at the closest object to avoid ambiguity for these previous methods.
Our result in (c) contains acceptable depth layers.

7.4 Single Image Digital Refocus

Adding refocus effect to a single natural image is difficult with-
out additional depth information. This task can be quickly accom-

plished with our general small-scale blur maps. In the refocus pro-
cess, the blur kernel size is proportional to |d − df |. By selecting
the focusing point manually, we actually define df . Then the blur
effect applies to different pixels in a spatially varying manner.

Two examples with their corresponding blur scale maps are shown
in Fig. 17. We refocus the image and make defocus strong as shown
in (c). Our defocus blur estimation method thus enables promising
single image shoot-and-refocus functionality from just a common
still-image camera. The poster-boy example shows slight blur-map
errors do not affect refocusing much.

7.5 Foreground Extraction

A foreground layer in a natural image mostly corresponds to the re-
gion of interest. Its estimation has long been an important problem
because it tells what people care in images. Our defocus blur es-
timates naturally serve this purpose because we can simply set the
nearest region as foreground. For better segmentation incorporat-
ing color information, we apply grab-cut [Rother et al. 2004] where
color and depth are both included as segmentation features.

One result is shown in Fig. 18(c). Based on it, we can generate more
effects, such as fading background color to highlight the foreground
person, as shown in (d).

7.6 Anaglyph 3D generation

We also generate stereo pairs by rendering a new view based on our
depth estimates. Disparity used in stereopsis is set as the reciprocal
of our estimate d. Following traditional stereopsis synthesis, we
generate anaglyph 3D images. Fig. 19 shows an example. Given
the small-scale defocus blur map (b), a stereo pair in (c) and (d) are

(a) Input & Blur Scale (b) Left Image (c) Right Image (d) Close-up (e) Anaglyph 3D Image

Figure 19: Stereo image generation using our estimated defocus blur map.

(a) Input & Blur Scale (b) Output Image and Closeup

Figure 20: Blur-aware image composition given our defocus blur estimates and depth maps.

0

0.2

0.4

0.6

0.8

1

(a) Input (b) Blur Scale Map (c) Manipulate Lighting

Figure 21: Lighting manipulation using our estimated small-scale
defocus map.

generated. The closeup is shown in (e). An anaglyph 3D image is
contained in (f), which can be viewed via 3D red-cyan glasses.

7.7 Blur-aware Image Composition

Inserting an object to images [Jia et al. 2006] usually needs human
interaction to deal with occlusion. Our estimates simplify this pro-
cess. Fig. 20 shows an example for such composition. Given the
basket and target scene images captured by the same camera, we
estimate their depth and associated blur scales. Then we place the
basket in three different positions in the target image. Occlusion is
automatically generated when the basket is behind the objects in the
scene. Depth-of-field is also generated in the composition results.

7.8 Manipulate Lighting

Our depth map is usable for re-lighting. We compute the surface
normal from RGB image and depth map via the method of [Chen

(a) Input (b) apBlur Scale M

Figure 22: One failure case.

and Koltun 2013], and then use it for relighting. Fig. 21 shows an
example that we add a point light source to lighten the bin. We do
not involve or vary other physical properties, such as reflection and
surface material, in this example for simplicity’s sake.

8 Limitations and Conclusion

Our method infers small-scale defocus blur. So it works best for
photos in their original resolution from cameras. If an image is
largely resampled, the blur information could be weakened or elim-
inated. While our method can distinguish among small blur scales,
it only indicates depth orders, rather than accurate depth values. Be-
sides, our method obtains the blur scales on edges in the first step.
If one region is occluded and the only visible part does not contain
any of its usable edges, there is no information to let our system
know it is a background region and its estimate could be similar
to the nearest occluder. One example is the central sky region in
Fig. 22. In specific cases, textures and edges in pictures inside pho-
tos may mislead blur estimation. As shown in Fig. 17, the drawing

on the poster harms the blur scale map, in which case semantic in-
formation is needed. Moreover, additional motion blur will harm
our estimated blurriness. Finally, as discussed in Section 6, it is not
possible to resolve the edge smoothness ambiguity. Local errors
could be caused when latent edge smoothness changes quickly.

To conclude this paper, we have proposed a non-parametric frame-
work to estimate small-scale blur that exists in photos. Our experi-
ments show this type of structure is surprisingly useful for inferring
geometric information from even a single image. We introduced an
optimization framework to make the problem trackable. A few ge-
ometry or depth related applications are enabled on single images.

Acknowledgements

We thank flickr users “Ben Millett” (benmillett), “Alan Travers”
(alan-travels), “Mike Small” (shuttermike) and Blogspot user
“mphoto888” (erasmushsu@gmail) for the pictures used in the pa-
per. This work is supported by a grant from the Research Grants
Council of the Hong Kong SAR (project No. 412911).

References

AFONSO, M. V., BIOUCAS-DIAS, J. M., AND FIGUEIREDO,
M. A. 2010. Fast image recovery using variable splitting and
constrained optimization. TIP 19, 9, 2345–2356.

BAE, S., AND DURAND, F. 2007. Defocus magnification. Com-
puter Graphics Forum 26, 3, 571–579.

CHAKRABARTI, A., ZICKLER, T., AND FREEMAN, W. T. 2010.
Analyzing spatially-varying blur. In CVPR, 2512–2519.

CHEN, Q., AND KOLTUN, V. 2013. A simple model for intrinsic
image decomposition with depth cues. In ICCV, 241–248.

COSSAIRT, O., ZHOU, C., AND NAYAR, S. 2010. Diffusion coded
photography for extended depth of field. TOG 29, 4, 31.

EIGEN, D., PUHRSCH, C., AND FERGUS, R. 2014. Depth map
prediction from a single image using a multi-scale deep network.
In NIPS, 2366–2374.

ELDER, J. H., AND ZUCKER, S. W. 1998. Local scale control for
edge detection and blur estimation. TPAMI 20, 7, 699–716.

HOIEM, D., STEIN, A. N., EFROS, A. A., AND HEBERT, M.
2007. Recovering occlusion boundaries from a single image.
In ICCV, 1–8.

JIA, J., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2006. Drag-
and-drop pasting. TOG 25, 3, 631–637.

KARSCH, K., LIU, C., AND KANG, S. B. 2012. Depth extraction
from video using non-parametric sampling. In ECCV, 775–788.

KHOSHELHAM, K., AND ELBERINK, S. O. 2012. Accuracy and
resolution of kinect depth data for indoor mapping applications.
Sensors 12, 2, 1437–1454.

LADICKY, L., SHI, J., AND POLLEFEYS, M. 2014. Pulling things
out of perspective. In CVPR, 89–96.

LEVIN, A., FERGUS, R., DURAND, F., AND FREEMAN, W. T.
2007. Image and depth from a conventional camera with a coded
aperture. TOG 26, 3, 70.

LIANG, C.-K., LIN, T.-H., WONG, B.-Y., LIU, C., AND CHEN,
H. H. 2008. Programmable aperture photography: Multiplexed
light field acquisition. TOG 27, 3, 55.

MAINI, R., AND SOHAL, J. 2006. Performance evaluation of
prewitt edge detector for noisy images. GVIP Journal 6, 3, 39–
46.

MUJA, M., AND LOWE, D. G. 2009. Fast approximate nearest
neighbors with automatic algorithm configuration. In Interna-
tional Conference on Computer Vision Theory and Application,
331–340.

RHEMANN, C., HOSNI, A., BLEYER, M., ROTHER, C., AND
GELAUTZ, M. 2011. Fast cost-volume filtering for visual corre-
spondence and beyond. In CVPR, IEEE, 3017–3024.

ROTHER, C., KOLMOGOROV, V., AND BLAKE, A. 2004. Grabcut:
Interactive foreground extraction using iterated graph cuts. TOG
23, 3, 309–314.

SAXENA, A., CHUNG, S. H., AND NG, A. Y. 2005. Learning
depth from single monocular images. In NIPS, 1–8.

SAXENA, A., SUN, M., AND NG, A. 2009. Make3d: Learning 3d
scene structure from a single still image. TPAMI 31, 5, 824–840.

SCHARSTEIN, D., AND SZELISKI, R. 2002. A taxonomy and eval-
uation of dense two-frame stereo correspondence algorithms.
IJCV 47, 1-3, 7–42.

SCHECHNER, Y. Y., AND KIRYATI, N. 2000. Depth from defocus
vs. stereo: How different really are they? IJCV 39, 2, 141–162.

SHI, J., XU, L., AND JIA, J. 2015. Just noticeable defocus blur
detection and estimation. In CVPR, 1–8.

SU, H., HUANG, Q., MITRA, N. J., LI, Y., AND GUIBAS, L.
2014. Estimating image depth using shape collections. TOG 33,
4, 37.

SUBBARAO, M., AND SURYA, G. 1994. Depth from defocus: a
spatial domain approach. IJCV 13, 3, 271–294.

TAI, Y.-W., AND BROWN, M. S. 2009. Single image defocus map
estimation using local contrast prior. In ICIP, 1797–1800.

VEERARAGHAVAN, A., RASKAR, R., AGRAWAL, A., MOHAN,
A., AND TUMBLIN, J. 2007. Dappled photography: Mask en-
hanced cameras for heterodyned light fields and coded aperture
refocusing. TOG 26, 3, 69.

WATANABE, M., AND NAYAR, S. K. 1998. Rational filters for
passive depth from defocus. IJCV 27, 3, 203–225.

WU, T.-P., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2008.
Interactive normal reconstruction from a single image. TOG 27,
5, 119.

XU, L., YAN, Q., AND JIA, J. 2013. A sparse control model for
image and video editing. TOG 32, 6, 197.

ZHOU, C., AND NAYAR, S. 2009. What are good apertures for
defocus deblurring? In ICCP, 1–8.

ZHOU, C., LIN, S., AND NAYAR, S. 2009. Coded aperture pairs
for depth from defocus. In ICCV, 325–332.

ZHU, X., COHEN, S., SCHILLER, S., AND MILANFAR, P. 2013.
Estimating spatially varying defocus blur from a single image.
TIP 22, 12, 4879–4891.

ZHUO, S., AND SIM, T. 2011. Defocus map estimation from a
single image. Pattern Recognition 44, 9, 1852–1858.

ZIOU, D., AND DESCHÊNES, F. 2001. Depth from defocus esti-
mation in spatial domain. CVIU 81, 2, 143–165.

