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Motion Detail Preserving Optical Flow
Estimation

Li Xu, Member, IEEE, Jiaya Jia, Senior Member, IEEE, Yasuyuki Matsushita, Senior Member, IEEE

Abstract—A common problem of optical flow estimation in the multi-scale variational framework is that fine motion structures
cannot always be correctly estimated, especially for regions with significant and abrupt displacement variation. A novel extended
coarse-to-fine (EC2F) refinement framework is introduced in this paper to address this issue, which reduces the reliance of flow
estimates on their initial values propagated from the coarse level and enables recovering many motion details in each scale.
The contribution of this paper also includes adaptation of the objective function to handle outliers and development of a new
optimization procedure. The effectiveness of our algorithm is demonstrated using the Middlebury optical flow benchmark and by
experiments on challenging examples that involve large-displacement motion.
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1 INTRODUCTION

The variational framework [18], together with coarse-to-
fine refinement [2], [23], is widely used in optical flow
estimation [10], [12]. In the Middlebury optical flow evalu-
ation website [3], [4], almost all top-ranked methods adopt
this scheme.

However, the conventional coarse-to-fine warping frame-
work has a fundamental limitation in handling motion
details. Brox et al. [9], in computing large-displacement
optical flow, pointed out that if flow structure is smaller
than its displacement, the latter may not be well estimated.
In this paper, we show that this issue can be even more
serious, as it also applies to small-displacement motion.
Taking Fig. 1 as an example, due to the camera motion, the
foreground toy deer has motion significantly different from
that of the background (average displacements d = −2 and
d = 21 respectively). This example is very challenging for
the coarse-to-fine variational optical flow estimation.

As shown in Fig. 1(e), in a coarse level, the narrow neck
does not exist and only the significant background motion is
estimated. This makes the actual motion of the foreground
pixels in the finer scale (Fig. 1(f)) drastically different
from the initial estimate from the background, violating the
linearization assumption and accordingly leading to highly
unstable motion estimation. The final flow result shown in
(c) includes considerable errors. This example discloses one
problem of the general coarse-to-fine variational model –
that is, the inclination to diminish small motion structures
when spatially significant and abrupt change of the dis-
placement exists.

We address this problem in this paper and propose
a unified framework for high-quality flow estimation in
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Fig. 1. Motion detail preserving problem. (a)-(b) Two input
patches. (c) Flow estimate using the coarse-to-fine varia-
tional setting. (d) Our flow estimate. (e)-(f) Two consecutive
levels in the pyramid. Flow fields are visualized using the
color code in (g). The input data is from [29].

both large and small displacement settings. Central to our
method is a novel selection scheme to compute extended
initial flow vectors in each image level. This makes the
following optimization not completely rely on the result
at the previous scale, and is thus capable of refining
the estimation correctly in a top-down fashion. Our flow
result shown in Fig. 1(d) contains small structures. More
examples are included in Section 5.

This paper also contributes in the following ways. First,
we use robust sparse features, together with patch matching,
to produce extended flow initialization, which helps enforce
the linearization condition in the variational setting. Second,
in the flow estimation model, we propose the selective
combination of color and gradient constraints in defining
the data term, robust to outliers. Third, we propose a fast
variable-splitting-based optimization method to refine flow
maps. It is highly parallel.

Finally, we employ the Mean Field approximation to
enable solving the objective function, which involves both
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discrete and continuous variables, commonly regarded as
challenging to handle. Extensive experiments visually and
quantitatively validate the performance of our approach for
both large- and small-displacement motion.

This manuscript extends its conference version [42] with
the following major differences. (1) We provide more
discussion and derivation details of the data term and its
Mean-Field approximation. (2) The extended coarse-to-fine
scheme is further generalized in order to handle non-rigid
motion with dense patch matching. (3) The occlusion is
progressively handled in each scale. (4) We have experi-
mented with more challenging examples in this paper.

The rest of the paper is organized as follows. Section 2
reviews related work. In Section 3, we introduce the flow
energy. An extended coarse-to-fine framework together with
the efficient solver is presented in Section 4. Section 5
shows results for both large- and small-displacement optical
flow. We conclude this paper in Section 6.

2 RELATED WORK

Following the variational model of Horn and Schunck [18],
modern optical flow estimation is usually posed as an
energy minimization problem, with the energy function
containing a data term and a smoothness term.

One important improvement over the original variational
model is the introduction of robust statistics for both the
energy terms. Black and Anandan [7] replaced the quadratic
penalty functions in [18] by non-convex robust ones to re-
ject outliers. �1-norm, or its variation (e.g., the Charbonnier
function), is also commonly used [10], [12], [37], [43].
Learning-based methods construct the distribution from
empirical data. In particular, Roth and Black [26] learned
spatial smoothness using Field-of-Experts, and combined it
with a Charbonnier data term; Sun et al. [34] proposed
a learning framework to fit distributions using Gaussian
Scale Mixture (GSM). In [33], Sun et al. empirically
demonstrated that the simple Charbonnier function (�1-
norm) actually outperforms other highly non-convex robust
functions due to its convex property.

Efforts also have been put into improving the optical
flow constraints. Haussecker and Fleet [17] proposed a
physical constraint to model brightness change. Wedel et
al. [37] proposed a structure-texture decomposition method
to reduce the discrepancy between two frames caused by
illumination change. Lempitsky et al. [20] computed the
matching cost only using high frequency components. Pre-
filtering on the input images was suggested in [34] and [25]
to handle illumination variation. These models are flexible,
but at the same time require pre-processing or advanced
optimization to solve complex objective functions.

In [10], Brox et al. introduced the gradient constancy
constraint to complement the brightness constraint. In [12],
separate penalties are imposed on the brightness and gradi-
ent constraints. Zimmer et al. [45] further employed the
normalized brightness and gradient constraints. We will
show later that the way to combine the brightness and
gradient terms can be improved by a selection model.

To preserve motion discontinuities, anisotropic- [39],
steerable- [34], [44], [45], and adaptive-smoothness [1],
[36] terms were studied. Segmentation information was
incorporated to regularize flow estimates in [19], [24],
[41]. Recently, the non-local smoothing strategy [33], [38]
demonstrated the potential to handle displacement discon-
tinuities and occlusion, which is tightly linked to explicit
refinement of the flow field using image filtering [28], [40].

Almost all the above methods rely on coarse-to-fine
warping to deal with motion larger than one pixel [2], [6].
As discussed in Section 1, this strategy could fail to recover
small-scale structures. Handling incorrect initialization by
adapting windows for stereo matching [31] is a solution.
It however assumes at least that the nearby disparities are
correctly initialized, which may not be true for small-scale
structures that are totally eliminated in the coarse level.

Using discrete optimization, Lempitsky et al. [20] pro-
posed fusing flow proposals obtained from different flow
estimation methods with various parameter settings. It is
effective at finding the optimal values among the given
proposals. But the sufficiency and optimality of the pro-
posals cannot be controlled. Because the proposals are still
generated by the conventional coarse-to-fine warping, it is
possible that none of the proposals preserve small-scale
motion structure. In comparison, our method computes high
confidence flow candidates in each level, and thus is not
entirely dependent on flow obtained from the coarse scale.

Related work also includes recent large-displacement
optical flow estimation [9], [11], where region-based de-
scriptor matching was introduced. It is an effective method
except for occasional vulnerability to matching outliers, due
to the data term. As discussed in [11], descriptor matching
could decrease the performance in small-motion regions.

By extending the numerical scheme of [43] and by
searching possible values to minimize the data energy [32],
large displacement optical flow estimation can be achieved.
As the smoothness prior is not enforced, the results can pos-
sibly be noisy and lack sub-pixel accuracy. In this paper, an
extended coarse-to-fine method is proposed, which can sig-
nificantly improve both the large- and small-displacement
optical flow estimation in a unified framework.

3 OPTICAL FLOW MODEL
We introduce in this section our objective function. We base
our data penalty function on the �1 norm to reject outliers
and use the Total Variation (TV) for regularization.

3.1 Robust Data Function
As the color constancy constraint is often violated when
illumination or exposure changes, combining the gradient
constraint was adopted [10], [12]. Denoting by u = (u, v)T

the flow field that represents the displacement between
frames I1 and I2, one choice of the data term for flow
estimation is

ED(u) =
∑
x

1
2
‖I2(x + u) − I1(x)‖ +

1
2
τ‖∇I2(x + u) −∇I1(x)‖, (1)
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(a) (b) Data costs for P1 (c) Data costs for P2

Fig. 2. Data cost distributions for two points. (a) A patch
in the “RubberWhale” example, where two points P1 and P2
are highlighted. (b)-(c) Plots of different data costs (heights
of the points) for P1 and P2. The ground truth displacement
is moved to 0 in the horizontal axis for ease of illustration.

where x ∈ Z
2 indexes the 2D coordinates, τ is a weight

balancing the two matching costs. ∇ is the discrete ap-
proximation of the gradient operator. This function, due to
the addition of two terms, is less accurate in modeling pixel
correspondence than only using one out of the two terms.

Fig. 2 shows an example where the patch in (a) contains
two points P1 and P2. Their data cost distributions with
respect to different displacement values are plotted in (b)
and (c) respectively (ground truth displacements are shifted
to 0). It is noticeable that the color constraint (blue curve
in (b)) does not produce the minimum energy near the
ground truth value because the color constancy is violated
given point P1 moving out of the shadow. Adding the
color and gradient terms using Eq. (1) also results in an
undesirable distribution (dashed magenta curve) as the cost
at the ground truth point is not even a local minimum.
Similarly, in Fig. 2(c), only the color constancy holds
because point P2 undergoes rotational motion, which alters
image gradients. It is not ideal as well to add the two
constraints in the data function definition.

The above analysis indicates that a good model should
only use the more fitting constraint, but not both of
them. We accordingly define a binary weight map
α(x) : Z

2 �→ {0, 1} to switch between the two terms. The
new data function is expressed as

ED(u, α) =
∑
x

α(x)‖I2(x + u) − I1(x)‖ +

(1 − α(x))τ‖∇I2(x + u) −∇I1(x)‖. (2)

When α(x) = 1, the gradient constraint is favored. Other-
wise, we select color constancy. Our empirical investigation
provided in Section 5 shows that this model can produce
higher quality results than various alternatives.

3.2 Edge-Preserving Regularization

The regularization term for optical flow estimation is gen-
erally designed to be edge preserving [34], [36], [45]. We
define our smoothness term as

ES(u) =
∑
x

ω(x)‖∇u(x)‖, (3)

where ‖∇u(x)‖ is the common TV regularizer. ω(x) is
the simple structure adaptive map that maintains motion

discontinuity [1], [36]:

ω(x) = exp(−‖∇I1‖κ), (4)

where we set κ = 0.8 in our experiments. For simplicity,
we use the brightness derivatives (2 channels) to compute
‖∇I1‖κ. The final objective function is defined as

E(u, α) = ED(u, α) + λES(u), (5)

where λ is the regularization weight.

3.3 Mean Field Approximation
Minimizing Eq. (5) involves simultaneously computing two
fields: continuous u and binary α, which is computationally
challenging. We employ the Mean Field (MF) approxima-
tion [14] to simplify the problem by first canceling out the
binary process by integration over α. The probability of a
particular state of the system is given by

P (u, α) =
1
Z

e−βE(u,α), (6)

where β is the inverse temperature and Z is the partition
function, defined as

Z =
∑
{u}

∑
{α=0,1}

e−βE(u,α). (7)

We then compute the sum over all possible αs with the
saddle point approximation (see Appendix in the supple-
mentary file for the derivation), yielding:

Eeff (u) = λES(u) −
∑
x

1
β

ln(e−βDI(u,x) + e−βD∇I(u,x)), (8)

where DI(u,x) = ‖I2(x + u) − I1(x)‖ and
D∇I(u,x) = τ‖∇I2(x + u) −∇I1(x)‖. It indicates
that the flow estimate by minimizing Eq. (8) is actually the
Mean Field (MF) approximation of minimizing Eq. (5).
The effective energy is therefore written as

Eeff (u) = Eeff
D (u) + λES(u), (9)

where the effective data function is

Eeff
D (u) =

∑
x

− 1
β

ln(e−βDI(u,x) + e−βD∇I(u,x)). (10)

The optimality of Eq. (9) does not depend on the estimate
of α. Eq. (10) defines a robust function and β plays a key
role in shaping it. When β → 0, Eq. (10) acts as the average
of the two data costs in Eq. (1), while β → ∞ leads to the
lower envelope of the two costs in Eq. (10). We show in
Fig. 3 several examples on how the effective function is
affected by varying β. Fig. 3(a) contains plots with different
α values, same as the ones shown in (b). In (b)-(d), we
show distributions of the effective data costs by varying β.
Note that a small β makes the distribution (plotted in (b))
close to the original one with α = 0.5 (shown in (a)) while
a relatively large β (shown in (d)) yields the distribution
approaching the lower envelope of the costs with α = 0 and
α = 1, which is what we need for accurate flow estimation.
The effective data costs (with β = 5) are also plotted in
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Fig. 3. Effective data cost distributions with different β
values. (a) shows data costs with different α values. (b)-(d)
show effective data costs by varying β.

Input: a pair of images for optical flow estimation
1. Construct pyramids for both of the images and set the initial

level l = 0 and ul = 0 for all pixels.
2. Propagate ul to level l + 1.
3. Extended Flow Initialization (Section 4.1)

3.1. Detect and match SIFT features in level l + 1.
3.2. Perform patch matching in level l + 1.
3.3. Generate multiple flow vectors as candidates.
3.4. Optimize flow using QPBO (Eq. (9)).

4. Continuous Flow Optimization (Section 4.2)
4.1. Compute the ᾱ map (Eq. (12)).
4.2. Solve the TV/�1 energy function in Eq. (15).

5. Occlusion-aware Refinement (Section 4.3)
6. If l �= n− 1 where n is the total number of levels, l = l + 1

and go to Step 2.
Output: the optical flow field

TABLE 1
Method Overview

Fig. 2(b) and (c) using the green crossed curves. They
are coincident with the smallest-value curves. Our method
always keeps β ≥ 1 empirically.

We optimize Eq. (9) using an iteratively reweighted
optimization strategy. The difficulty of minimizing Eq. (9)
stems from the non-convex data function. Taking the partial
derivative with respect to the variable u yields

∂uEeff
D (u) =

∑
x

ᾱ(x)∂uDI + (1 − ᾱ(x))∂uD∇I, (11)

where ᾱ(x) is the flow-dependent weight, written as

ᾱ(x) =
1

1 + eβ(DI(u,x)−D∇I(u,x))
. (12)

It indicates that the energy can be minimized by iteratively
updating ᾱ in the outer loop and by solving for u with the
computed weights afterwards. In addition, although Eq. (9)
is non-convex and difficult to solve using continuous opti-
mization, there is no obstacle to apply discrete optimization
if candidate labels can be obtained. We propose a robust
algorithm, described in the next section, to estimate u.

The solver can also be interpreted from another perspec-
tive. Note that ᾱ(x) is actually the MF-approximation of

α(x) (see Appendix in the supplementary file), and thus
can be updated once u is obtained. It has an effect similar
to α(x) (given in Eq. (2)) in constraint selection.

4 OPTIMIZATION FRAMEWORK
Traditional optical flow estimation, ascribed to the use of
the variational setting, relies excessively on the coarse-to-
fine refinement. As discussed in Section 1, this process
could fail to recover ubiquitous fine motion details given
the possible large discrepancy between the initial flow and
the ground truth displacements in each image level.

In this section, based on Eeff and ᾱ, we propose an
iterative method to optimize Eq. (5). Specifically, because
Eeff

D (u) is independent of ᾱ, we first infer multiple high-
confidence flow candidates and apply discrete optimization
to select the optimal ones. With this result, ᾱ in Eq. (12) can
then be quickly estimated. We finally improve the subpixel
accuracy of flow with the estimated ᾱ using continuous
optimization. This procedure is found to be surprisingly
effective in dampening estimation errors.

Our overall algorithm is sketched in Table 1 based on
iteratively processing images in a top-down fashion. The
steps are detailed further below.

4.1 Extended Flow Initialization
We address the general flow initialization problem in each
image scale by finding multiple extended displacements
(denoted as {uv

0, ...,u
v
n}) through sparse feature match-

ing and dense patch matching to improve estimation in
uc, which is the flow field computed in the immediately
coarser level. The following steps are adopted to obtain the
extended displacements.

4.1.1 SIFT feature detection
SIFT feature detection and matching [22] can efficiently
capture large motion for objects undergoing translational
and rotational motion. Instead of computing a dense de-
scriptor field as in scene matching [21], we only employ
sparse matching of discriminative points, which avoids
introducing many ambiguous correspondences and outliers.
One example is shown in Fig. 4(b). Note that some matches
could still be wrong. But this is not a problem as we will
eventually employ discrete optimization to only select the
most credible candidates.

4.1.2 Selection
The computed displacement vectors by feature matching
are denoted as {s0, ..., sn}, as shown in Fig. 4(b). They
are new potential flow candidates except those that already
exist in the initial flow field uc (shown in Fig. 4(c)). To
robustly screen out the duplicated vectors, we compute
the Euclidean distance between each si and all uc

js where
pixel j is within a 5 × 5 window centered at the reference
feature si. If all results are greater than 1 (pixel), we regard
si as a new flow candidate. We repeat this process for
all is, and denote the m remaining candidate vectors as
{sk0 , ..., skm−1}, as shown in Fig. 4(d).
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Fig. 4. Extended flow initialization. (a) Two input frames. (b)
One of the images overlaid with the computed feature motion
vectors si. (c) Flow field uc propagated from the coarse level.
(d) New displacements {sk0 , ..., skm−1} computed using (b)
and (c). (e) New displacement maps. Each us

i is expanded
from ski and therefore is a constant-value map. (f) Dense
nearest-neighbor patch matching field un. (g) Optimized flow
map u0 with respect to all candidates in the current image
scale. (h)-(i) show close-ups of (c) and (g).

This strategy significantly reduces the system depen-
dence on the coarse-scale flow estimation. It is notable as
well that feature matching initially produces many vectors
distributed in the whole image, as shown in Fig. 4(a);
but they reduce to less than 15 candidates after local
comparison with uc in the given example. Only the most
distinct flow vectors are retained.

4.1.3 Expansion

The m remaining vectors {sk0 , ..., skm−1} represent pos-
sible missing motion in the present flow field uc. To
determine whether or not they are better estimates to replace
the original ones in uc, we expand each displacement vector
ski to a constant-value flow field us

i for further fusion. The
fields are shown in Fig. 4(e).

4.1.4 Patch matching

SIFT Feature matching, albeit very effective, sometimes
still misses motion vectors. It is because small textureless
objects may not have distinct features, making their detec-
tion problematic. Another main reason is that to let SIFT
descriptors gather enough information for 128-dimension
feature vector formation, the patches on which they operate
should at least contain 16 × 16 samples as suggested.
The size could be too large for non-rigid motion as edge
statistics may change a lot for successive two frames.

We resort to dense nearest-neighbor patch matching for
amelioration. The patches we use can be as small as
5 × 5. They are more flexible to describe motion of small
textureless regions, as shown in Fig. 4(f). Specifically, we
compute the matching field un by minimizing energy

E(un,x) =
∑

y∈N(x)

∑
k

‖Ik2(y + un(x)) − Ik1(y)‖2, (13)

(a) u0 map (b) ᾱ(x) map (c) ur map

(d) Close-up (e) Close-up

Fig. 5. Continuous optimization. Errors are further reduced
in this step. (d) and (e) show close-ups of (a) and (c).

where Ik ∈ {Ir, Ig, Ib, ∂xI, ∂yI}, denoting a total of 5 color
and gradient channels. N(x) is a 5 × 5 window centered
at x. Although noise is generated by this method, it can be
quickly rejected in the following optimization step with the
collection of a set of flow candidates for each pixel.

The energy (13) was employed in [13] as well. But
linearization was performed eventually in [13], confining
only local refinement. In comparison, we do not impose
any smoothness constraint at this stage. So estimates for
very large displacement can be obtained.

4.1.5 Matching field fusion
The m + 1 new motion fields {us

0
, ...,us

m−1,u
n}, together

with the original uc, comprise several motion candidates
for each pixel in the present image scale. Selection of the
optimal flow among the m+2 candidates for each pixel is a
labeling problem, with the objective function in Eq. (9). It
can be solved by discrete optimization efficiently because
on the one hand the number of candidates is small, thanks
to the carefully designed selection process; on the other
hand, Eq. (9) does not involve α, simplifying computation.

We adopt the Quadratic Pseudo-Boolean Optimization
(QPBO) [27] to solve this problem. The fusion move
step [20] is used to repeatedly fuse the candidates until
each gets visited twice. Also, to suppress the checker-board-
like artifacts commonly produced near motion boundaries
in discrete optimization, we employ the anisotropic repre-
sentation of the TV regularizer ‖∇u‖ = ‖∇u‖1 + ‖∇v‖1

with 8-neighbor discretization [15]. This method turns the
checker-board-like boundaries to octagons, a better approx-
imation of the original smooth boundaries. The output is the
flow map denoted as u0. One result is shown in Fig. 4(g),
which contains better recovered motion structure compared
to the field uc in (c). Close-ups are shown in (h) and (i).

Note that an alternative is to directly discretize the
original 2D solution space and fuse all candidate flows. It
however may suffer from expensive and possibly unstable
computation because hundreds of labels can be produced
simultaneously in the original resolution.

4.2 Continuous Flow Optimization
We now refine flow u0 through continuous optimization,
by iteratively updating ᾱ in Eq. (12) and u. The initial
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flow field is taken into Eq. (12) to estimate ᾱ, as shown in
Fig. 5(b). Considering that Eq. (10) is highly non-convex,
we then take ᾱ back to Eq. (5) for optimization in the
variational model.

As color images are used, we still denote by
Ik ∈ {Ir, Ig, Ib, ∂xI, ∂yI} the set of channels included in the
data term and use αk ∈ {ᾱ, ᾱ, ᾱ, (1 − ᾱ)τ, (1 − ᾱ)τ} to
represent the corresponding weights. The energy in Eq. (5)
is thus written as

E(u) =
∑
x

∑
k

αk(x)‖Ik2(x + u) − (14)

Ik1(x)‖ + λ(x)‖∇u(x)‖,
where λ(x) := λω(x). With the initial flow u0 esti-
mated in the previous step, we solve for the increments
du = (du, dv)T by minimizing Eq. (15). The final flow
vector is u = u0 + du. By convention, the Taylor expan-
sion of Eq. (15) at point x + u0 yields

E(u) =
∑
x

∑
k

αk(x)‖Ikxdu + Ikydv + Ikt ‖ +

λ(x)‖∇(u0 + du)(x)‖, (15)

given small du. In Eq. (15),

Ix = ∂xI2(x + u0),
Iy = ∂yI2(x + u0),
It = I2(x + u0) − I1(x).

To preserve motion discontinuity, we employ the rotational
invariant isotropic form of the TV regularizer, written as

‖∇u‖ =
√

(∂xu)2 + (∂yu)2 + (∂xv)2 + (∂yv)2. (16)

Our Solver We propose decomposing the optimization
into three simpler problems, each of which can have the
globally optimal solution. The key technique is a variable-
splitting method [35] with auxiliary variables p and w,
representing the substituted data cost and flow deriva-
tives respectively, to move a few terms out of the non-
differentiable �1-norm expression. This scheme is found to
be efficient and is crucial to produce high quality results.

The derivatives of each flow vector comprise four ele-
ments, i.e.,

∇du = (∂xdu, ∂ydu, ∂xdv, ∂ydv)T.

For each element, we introduce a corresponding auxiliary
variable. The set of the variables is denoted as

w = (wdux , wduy , wdvx , wdvy)T.

Then Eq. (15) is transformed to
∑
x

∑
k

1
2η

‖Ikxdu + Ikydv + Ikt − pk‖2 + αk‖pk‖ +

1
2θ

‖∇du − w‖2 + λ‖∇u0 + w‖. (17)

In this function, 1
2η‖Ikxdu + Ikydv + Ikt − pk‖2 + αk‖pk‖

encourages pk to approach Ikxdu + Ikydv + Ikt , and
1
2θ‖∇du − w‖2 + λ‖∇u0 + w‖2 makes w similar to

Input: images Ik , initial flow field u0, weights αk .
Perform linearization at u0

η ← η0

repeat
Compute pk using Eq. (19)
θ ← θ0
repeat

Compute w using Eq. (21).
Compute du by solving Eq. (22).
θ ← θ/3

until θ < θmin
η ← η/3

until η < ηmin

ur = u0 + du
Output: refined flow field ur .

TABLE 2
Algorithm for continuous flow optimization

∇du. It can be observed as well that Eq. (17) approaches
Eq. (15) when θ → 0 and η → 0. Our algorithm proceeds
with the following iterations with initial u := u0.

1. Fix u to estimate p. The simplified objective function is

min
∑
x

∑
k

1
2η

‖Ikxdu + Ikydv + Ikt − pk‖2 + αk‖pk‖. (18)

Single variable optimization can be used in this step. The
optimal solution is given by the shrinkage formula [16]

pk = sign(ok)max(|ok| − ηαk, 0), (19)

where ok := Ikxdu + Ikydv + Ikt is the flow constraint.

2. Fix u to estimate w. The function reduces to

min
∑
x

1
2θ

‖∇du − w‖2 + λ(x)‖∇u0 + w‖2. (20)

Similarly, the following solution can be obtained by the
shrinkage formula

wdux = max(‖∇u‖2 − θλ, 0)
∂xu

‖∇u‖2
− ∂xu0, (21)

where u = u0 + du. Solutions for wduy , wdvx , and wdvy

can similarly be derived. The computation in this step is
also quick and is highly parallel by nature.

3. Fix w, p and solve for u. The objective function is

min
∑
x

∑
k

1
2η

‖Ikxdu+Ikydv+Ikt −pk‖2+
1
2θ

‖∇du−w‖2.

(22)
It is quadratic and the corresponding Euler-Lagrange equa-
tions of Eq. (22) are linear w.r.t. du and dv. A globally
optimal solution can be obtained by solving the linear
system in this step.

Our method iterates among optimizing (19), (21), and
(22) until convergence. Note that cost function decomposi-
tion with auxiliary variables was used in [38], [39], [43] for
flow estimation. Their steps use the primal-dual solvers. In
comparison, our scheme consists of a set of simpler sub-
problems, each with guaranteed global optimality. It thus
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(a) “Hydrangea” (b) n=1, AAE=24.37 (c) n=2, AAE=2.52 (d) n=5, AAE=2.45

(e) ground truth (f) n=2, AAE=4.83 (g) n=5, AAE=2.63 (h) n=10, AAE=2.60 (i) Energy plot

Fig. 6. Continuation scheme. (b)-(d) show our results obtained using the algorithm in Table 2 with the continuation scheme.
n is set to 1, 2, and, 5 respectively. The error is already very small when n = 2. (f)-(h) show results with fixed η = 0.1 and
θ = 0.01 in all iterations. AAE stands for “average angular error” [3]. (i) Energy decreasing w.r.t. the number of iterations with
and without continuation.

differs from previous methods in the way of formulating the
problem and of proposing the solver to each sub-problem.

In practice, θ and η are critical parameters that should be
small. It was found that fixing them to constants typically
results in slow convergence. We thus adopt the continuation
scheme [16] for speedup, which initially sets θ and η to
large values to allow warm-starting, and then decreases
them in iterations toward the desired convergence. Our
algorithm is sketched in Table 2, where ηmin and θmin

are set to 0.1 and 0.01 respectively. η0 and θ0 are the
respective initial values, configured as η0 = 3n × ηmin and
θ0 = 3n × θmin, where n controls the number of iterations.
Fig. 5(d) and (e) show flow fields before and after the
continuous refinement in an image scale. We denote by
ur the refined flow field.

Fig. 6 demonstrates the effectiveness of this continuation
scheme (that is, by altering η and θ in iterations) and
compares results obtained with and without using it. We
set different iteration numbers in experiments. The top row
shows results with n = 1, n = 2, and n = 5 using the
continuation scheme. The bottom row contains estimates
using the algorithm shown in Table 2, by fixing η = 0.1
and θ = 0.01 in all iterations. Energy decreasing w.r.t. the
number of iteration is plotted in (i). It is clear from the
comparison that our algorithm with the continuation scheme
converges more efficiently.

4.3 Occlusion-Aware Refinement

Motion vectors for occluded pixels generally cannot be
determined due to the lack of correspondences. In this step,
we handle occlusion in the computed flow field. Although
cross-checking is effective in occlusion detection, it needs
to compute optical flow bidirectionally. Our strategy is
based on an observation that multiple pixels mapping to
the same point in the target image using forward warping
are possibly occluded by each other.

Thus, we detect occlusion using the mapping uniqueness
criterion [8], expressed as

o(x) = T0,1(f(x + u(x)) − 1), (23)

(a) Occlusion and flow (b) ur (c) Refined

Fig. 7. Occlusion-aware refinement. (a) Flow estimate
overlaid with the occlusion map (o(x) > 0.5). (b) and (c) show
results before and after the final refinement in an image
scale.

where f(x + u(x)) is the count of reference pixels mapped
to position x + u(x) in the target view using forward
warping. Tl,h(a) is a function that truncates the value of
a if it is out of the range [l, h]. Eq. (23) indicates if there
exist more than one reference pixel mapping to x + u(x),
the occlusion label for the reference x is set. Although this
simple method sometimes fattens the occlusion region, it
seldom leaves out true occluded pixels, and thus is useful
in the final flow estimation. In practice, we apply a small
Gaussian filter on the computed o(x) to reduce noise.

Our measure of the data confidence based on the occlu-
sion detection is expressed as

c(x) = max(1 − o(x), 0.01). (24)

The value 0.01 is to make c(x) always larger than 0.
The metric is used in the following two ways to improve
flow estimation in the occluded regions. First, we explicitly
perform cross bilateral filtering for the detected occluded
pixels where o(x) > 0.5. Each pixel is further weighted
by the measure c(x) so that occluded pixels have weaker
influence in filtering. This scheme was shown to be effective
in occlusion handling [28], [40] and was used in defining
the flow function [33], [38].

Second, based on the fact that we should not trust the
data term with large o(x), the energy function is updated
with respect to the occlusion confidence, which makes flow
computation for the occluded pixels depend more on the
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(a) (b)

Fig. 8. Flow estimation error comparison. (a) Estimation
errors w.r.t. α. α = 1 and α = 0 indicate respectively
that only the color or gradient constancy constraint is used.
α = 0.5 refers to weighted addition of the two constraints. (b)
Estimation errors w.r.t. β on the “RubberWhale” example.

local smoothness constraint:

E′(u) = c(x)ED(u) + λES(u). (25)

It can be efficiently optimized also with our solver.
The occlusion-aware flow refinement is applied at each

scale with the computed vectors from the continuous esti-
mation step. The final result of the “Grove” example in
one image scale is shown in Fig. 7 where the detected
occlusion map is overlaid on the flow estimate. We compare
the ur maps obtained before and after our occlusion-aware
refinement in (b) and (c).

5 EVALUATION AND EXPERIMENTS

In this section, we present our results in both small- and
large-displacement settings. τ in Eq. (2) is set to 1/1.4
to normalize the color and gradient constraints, which is
learned from the Middlebury training image set by setting
the color and gradient costs to be equal. In order to reduce
the sampling artifacts in Eq. (12), we filter DI and D∇I

with a small Gaussian kernel with the standard deviation
1.0. β, λ, η, and θ are empirically set to 5, 12, 0.1,
and 0.01 respectively. For feature detection, we use the
implementation of Lowe [22]. Matches are retained only
if ratios between the best and the second best matching
scores are smaller than 0.6. For patch matching, we adopt
the randomized nearest-neighbor method approximation [5]
with patch size 5 × 5.

5.1 Evaluation of the Data Term

We evaluate the selective combination strategy in defining
the data cost function. We compare our method with those
using fixed weights α = 0.5, α = 1, and α = 0 on
the Middlebury training set [4], where the ground truth
data are available. To demonstrate the alpha influence not
involving our other steps, we employ the classic coarse-to-
fine warping framework. The errors are listed in Fig. 8(a),
calculated on the two representative examples “Rubber-
Whale” and “Urban2”. It can be noticed that the average
angular error (AAE) for “Urban2” is small when using the
color constraint alone while the gradient constraint is more
favored in “RubberWhale” due primarily to illumination
variation. Simply adding these two constraints (α = 0.5)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Visual comparison with different α settings. (a)
and (b) show two image patches. (c) and (d) show flow
results computed using the color and gradient constraints
respectively. (e) is the ground truth flow field. (f) shows the
result with α = 0.5. (g) is the flow map obtained using our
selective combination model. (h) shows the ᾱ map.

(a) Frame 2 (b) No OH (c) With OH

(d) Frame 1 (e) No OH (f) With OH

Fig. 10. Flow estimation of a car moving away from the
camera. (a) and (d) are two input images. (b) and (e) show
respectively the flow field produced without occlusion han-
dling and the backward warping result. (c) and (f) are the
flow field and the warping result with our occlusion handling.
“OH” stands for occlusion handling.

produces AAE in between. Our method locally selects the
more optimal term and thus performs better.

Fig. 8(b) shows how the estimate changes with respect
to different β for the “RubberWhale” example. β = 0
corresponds to weighted addition of the two normalized
constraints. Note that the average error of the flow field
decreases quickly with the increase of β, in line with our
understanding (explained in Section 3.3).

In Fig. 9, we show a visual comparison. Red arrows in
(a) and (f) indicate pixels violating the color constancy
assumption. The blue arrows highlight the edge of the
wheel, of which the gradient varies. (c) and (d) show results
by respectively setting α = 1 and α = 0. (f) shows the
result with α = 0.5, where problems caused by using either
of the constraints is still present. Our selective combination
model helps robustly reject outliers, as shown in (g).

For quantitative comparison, a series of experiments with
different optimization strategies are conducted, varying
from traditional coarse-to-fine to our full optimization with
EC2F and occlusion refinement. The error statistics are
listed in Table 3, where “F” represents setting α = 0.5 and
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Method RubberWhale Hydrangea Dimetrodon Grove2 Grove3 Urban2 Urban3 Venus
F+C2F 3.29 2.25 2.58 2.26 5.88 3.61 5.23 6.45
A+C2F 2.95 2.02 2.50 2.09 5.51 2.81 4.28 6.07
F+EC2F 2.95 2.13 2.54 2.07 5.22 2.66 4.09 4.27
A+EC2F 2.61 2.06 2.51 2.00 5.17 2.40 3.32 3.86
F+EC2F+o 2.93 2.08 2.55 2.04 5.13 2.46 4.02 4.07
A+EC2F+o 2.59 2.02 2.52 1.92 4.87 2.22 3.21 3.56
F+EC2F+O 2.92 2.08 2.54 1.97 4.88 2.40 4.03 3.70
A+EC2F+O 2.59 1.97 2.51 1.88 4.77 2.15 3.15 3.55

TABLE 3
AAEs yielded by different strategies on the Middlebury optical flow training data

Initial Flow RubberWhale Hydrangea Dimetrodon Grove2 Grove3 Urban2 Urban3 Venus
C2F 2.71 2.00 2.51 2.08 5.19 2.77 4.14 5.87
C+SIFT 2.61 1.97 2.50 1.94 4.79 2.17 3.20 3.65
C+PM 2.66 2.00 2.51 1.95 4.83 2.27 3.87 4.13
All 2.59 1.97 2.51 1.88 4.77 2.15 3.15 3.55

TABLE 4
AAEs on the Middlebury training data under different flow initialization

Fig. 11. The average end-point errors (EPEs) on the benchmark data as of Oct, 2010, copied from the Middlebury
website [4]. Our method is denoted as “MDP-Flow2”.

“A” stands for our adaptive α scheme. “C2F” and “EC2F”
represent the classic and extended coarse-to-fine schemes
respectively. As described in Section 4.1, “EC2F” uses
extended flow initialization at each scale. Our method yields
consistent quality improvement over other alternatives.

5.2 Evaluation of Occlusion Handling
We also evaluate the occlusion-aware refinement step. The
bottom several rows of Table 3 list the statistics produced
without (“*+EC2F”) and with occlusion-aware refinement
(“*+EC2F+O”). “*+EC2F+o” stands for occlusion handling
used in the early version of the system [42], where cross
bilateral filtering is not employed. Both occlusion handling
methods yield reasonable results.

For the special case that an object moves away from
the camera, the occlusion regions could be largely fattened
because multiple pixels on the object when it is near could
be mapped to one pixel when it is far. Even in this case,
the flow estimates can still be refined because our occlusion
handling in essence seeks flow discontinuity alignment with
image edges.

We show in Fig. 10 an example. (b) and (e) show our flow
and backward warping results without occlusion handling.
The moving car is correctly reconstructed but the flow is

not accurate at the occluded region (rightmost part of the
car). With occlusion handling, the results are those shown
in (c) and (f). The seemingly incorrect warping result in
(f) in fact indicates correct handling of occlusion. The flow
near the boundary is a bit noisy in (c), owing to the fattened
occlusion region jeopardizing proper flow regularization. It
is one of the limitations.

5.3 Evaluation of Extended Coarse-to-Fine
We also evaluate our coarse-to-fine framework with ex-
tended flow initialization. Specifically, we have tested 1)
classical flow initialization in the coarse-to-fine framework;
2) flow initialization extended by SIFT feature matching
only; 3) extended flow initialization with patch matching; 4)
our flow initialization with both SIFT and patch matching.
Their abbreviations are “C2F”, “C+SIFT”, “C+PM” and
“All”. The statistics are listed in Table 4. The results indi-
cate that extended flow initialization (“C+SIFT”, “C+PM”,
“All”) can greatly improve estimation.

5.4 Middlebury Optical Flow Benchmark
We now evaluate our method on the Middlebury optical
flow benchmark data. The table in Fig. 11 is copied in part
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(a) Input (b) Warping (c) Ground truth (d) Ours (e) LDOF [9]

(f) C2F [10] (g) LDOF [9] (h) [32] (i) Ours (j) Ours

Fig. 12. Visual comparison on a large-displacement optical flow example from the HumanEva-II data set [30].

(a) (f)

(b) (c) (d) (e)

(i)(h)(g)

(a) (f)

(b) (c) (d) (e)

(i)(h)(g)

Fig. 13. Visual comparison of the small-displacement opti-
cal flow results on two examples. (a) Our flow results. Close-
ups of (b) the input image, (c) ground truth flow, (d) our
estimate, and of results of (e) Brox et al. [10], (f) LDOF [11],
(g) Zimmer et al. [45], (h) Werlberger et al. [38], and (i) of Sun
et al. [33], are shown.

from the evaluation website [4]. Our method, denoted as
“MDP-Flow2”, ranked 1st at the time of submission (as of
Oct. 29, 2010).

Regarding the running time, in our current CPU imple-
mentation, the whole program takes 420s to compute a
high quality flow field for an image pair with resolution
640×480 in, for instance, the Urban sequence. The running
time is reported on a laptop computer containing an Intel
Core i7 CPU @2.13GHz and 2GB Memory.

We show our flow results for two examples in Fig. 13(a)-

(b). Methods of Brox et al. [10] that uses TV/�1 model
for flow estimation, the large-displacement optical flow
estimator [11] that incorporates descriptor matching in the
data term, and of three top-performing methods that pro-
vide motion-discontinuity-preserving regularization terms,
produce results shown in (e)-(i).

5.5 Large-Displacement Optical Flow Estimation
Our method by nature can deal with large-displacement
flow, without any modification of the framework. One
example from the HumanEva-II benchmark dataset [30]
is shown in Fig. 12. It contains significant articulated
motion of a running person. The fast foot movement cannot
be estimated correctly in the conventional coarse-to-fine
scheme [10], as shown in (f). (b) shows the backward
warping result based on our dense flow estimate. The close-
ups are shown in (d). Our method successfully recovers the
shape of the left foot. The pixels in the occluded region are
simply unknown for all optical flow estimation methods.
The flow magnitude maps are shown in the second row.
The maps in (g) and (h) are produced by two representative
large-displacement optical flow methods.

The flexibility of our method is boosted by patch match-
ing especially for non-rigid large-displacement motion esti-
mation. Fig. 14(a) and (b) show two frames. The duck head
undergoes very large motion. So it is not surprising that
other optical flow methods based on the traditional coarse-
to-fine scheme [10], [33] cannot cope with it well. The
large-displacement methods using descriptor matching [11],
[21], [42] produce results shown in Fig. 14(g)-(l). There
are also errors. The flow and warping results produced
by extended coarse-to-fine with only patch matching are
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(a) Frame 1 (b) Frame 2 (c) Brox et al. [10] (d) Brox et al. [10]

(e) Sun et al. [33] (f) Sun et al. [33] (g) SIFT Flow [21] (h) SIFT Flow [21]

(i) LDOF [11] (j) LDOF [11] (k) MDP-Flow [42] (l) MDP-Flow [42]

(m) Patch Matching (n) Patch Matching (o) Ours (p) Ours

Fig. 14. A challenging example for large-displacement optical flow estimation. (a) and (b) show two input images. Seven
flow estimation and the corresponding backward warping results are shown in (c)-(p).

shown in (m) and (n). Although the field is noisy, it roughly
captures the head motion. Our final flow estimate, yielded
with the complete EC2F scheme that involves both patch
matching and feature matching, is shown in (o). Its quality
is much higher.

Another example is shown in Figs. 15 and 16, which
is a low-frame-rate sequence containing a football player.
Fig. 15 contains the results of the conventional coarse-to-
fine warping method [10], the large-displacement estima-
tor [11], and of our method. Fig. 16 shows a few results
in the sequence. All examples demonstrate that in terms
of handling large motion of small-size regions, our method
reduces the dependence on the linearization condition in
the variational model and thus can generate good results.

6 DISCUSSION AND CONCLUSION

We have presented a new optical flow estimation framework
to reduce the reliance on the coarse level estimation in the
variational setting for small-size salient motion estimation.
Differing from previous efforts mainly to improve the
model, we instead revise flow initialization in the coarse-to-
fine setting, which yields a unified framework to preserve
motion details in both small- and large- displacement
scenarios. The proposed method also takes advantage of the
accurate variational coarse-to-fine framework and of non-
local search/matching. Other main contributions include the
selective combination of the color and gradient constraints,
sparse feature matching and dense patch matching to collect
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(a) Frame 2 (b) Brox et al. [10] (c) LDOF [11] (d) Ours

(e) Frame 1 (f) Brox et al. [10] (g)LDOF [11] (h) Ours

Fig. 15. Large-displacement optical flow results. (f)-(h) show the backward warping results based on the flow estimates in
(b)-(d) respectively.

Fig. 16. Optical flow estimation in consecutive frames in a low-frame-rate sequence. First row: two-body-overlaid images to
visualize the large displacement. Second row: our flow estimates. Third row: magnitude maps.
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(a) Frame 2 (b) Ours (c) Ours+user input (d)

(e) Frame 1 (f) Ours (g) Ours+user input (h)

Fig. 17. A challenging example. (a) and (e) are two input frames. (b) and (f) show our automatically computed flow field and
the backward warping result. (c) and (g) are the flow field and the backward warping result with simple user indication of two
additional pairs of correspondence, shown as the red and blue dots in (a) and (e). (d) and (h) are close-ups of (f) and (g).

appropriate motion candidates, the mean field approxi-
mation to simplify optimization, and a variable splitting
technique to enable fast and reliable flow estimation. Our
future work will be system acceleration using GPU.

Limitations There are several limitations. First, although
sparse feature matching and dense patch matching comple-
ment each other in proposing new flow candidates, they
could still be insufficient especially for motion in texture-
less or regularly-patterned regions, where large matching
ambiguity could occur. Other information such as simple
user input may help.

We show one example in Fig. 17. (a) and (e) are input
frames where the boy’s right leg and arms undergo large
motion. (b) and (f) show our estimated flow field as well
as the backward warping result. Primary large-displacement
motion (of the shoe, for example) is correctly computed
except for the left arm. Note that textureless regions not
only fail feature detection, but also create ambiguities for
nearest-neighbor matching. In this example, we manually
specify two corresponding points in the input frames (the
red and blue dots in (a) and (e)), and then take the
displacement vectors as new constant flow candidates to
improve estimation. Final results are shown in (c) and (g)
with close-ups in (d) and (h). They indicate that simple
user interaction can decisively improve flow estimation in
challenging regions.

Second, motion inference for large occluded regions is
still an open problem due to lack of correspondence. Our
current occlusion handling relies on a heuristic smooth-
ness assumption, which could fail in texture- or color-rich
regions when occlusion is significant. Incorporating other
clues, such as color segmentation, may remedy the problem.
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